Work

In Physics terms, work is done when a **force is applied** to an object causing it to **displace** in the **direction of the force**.

$$W = Fscos\theta$$
Where W represents Work (Joules)
 F represents Force (N)
 s represents displacement (m)
 θ represents the angle between the force and displacement (°)

NB: 1 Joule = 1Nm

Example.1

Calculate the work done upon an object when a force of 200N is applied, causing it to displace 5m.

NB: As both the force and displacement are parallel, $\cos(0^\circ) = 1$

Example.2

Calculate the work done upon a box that is pulled by a 1000 N force at an angle of 40° from the horizontal, given it is displaced by 10 m.

NB: As force and displacement are not parallel, $\cos(\theta^{\circ})$ must be included

Force – Displacement Graph

Not every system involves a constant force being applied upon an object resulting in a displacement. In fact, often the applied force varies as an object is displaced. In which case the work done upon an object can be found via a force – displacement graph.

W = Area under graph

Where *W* represents Work (Joules)

Example.1

Calculate the work done on the object displayed in the above graph as it is displaced from 0 to 10.0 m.

$$W = ?$$

$$W = Area under graph$$

$$= \frac{1}{2}BH [Area of a triangle]$$

$$= \frac{1}{2} \times 10.0 \times 30$$

$$= 150 J$$

Example.2

A stationary object has a varying force applied to it as shown in the below force – displacement graph. Calculate the work done on the object displayed in the above graph as it is displaced from 0 to 10.0 m.

$$W = ?$$

$$W = Area under graph$$

$$= \frac{1}{2}(a+b)h [Area of a trapezium]$$

$$= \frac{1}{2} \times (2+10) \times 6$$

$$= 36 J$$

Kinetic Energy

Kinetic energy is the energy associated with an object's motion.

 $E_k = \frac{1}{2}mv^2$ Where E_k represents the kinetic energy (J) m represents the object's mass (kg) v represents the object's speed (ms⁻¹)

Example.1

Calculate the kinetic energy of the Falcon 9 rocket of mass 549 tonne at a top speed of $9.31 \times 10^3 \text{ ms}^{-1}$ upon launch.

 $E_{k} = ? \qquad E_{k} = \frac{1}{2}mv^{2}$ $m = 549 \times 10^{3} kg \qquad = \frac{1}{2} \times 549 \times 10^{3} \times (9.31 \times 10^{3})^{2}$ $= 2.38 \times 10^{13} J$

Example.2

Calculate the kinetic energy of an electron travelling at one tenth the speed of light. **NB**: For this example we are ignoring relativistic mass.

A linear accelerator – LINAC

Example.3

Calculate the work done by friction to stop a 900 kg car rolling initially at 10 ms⁻¹.

$$W = ? \qquad W_{fric} = \Delta Ek \\ m = 900 \ kg \qquad = Ek(f) - Ek(i) \\ u = 10 \ ms^{-1} \qquad = \frac{1}{2}mv^2 - \frac{1}{2}mu^2 \\ = \frac{1}{2}m(v^2 - u^2) \\ = \frac{1}{2} \times 900 \times (0^2 - 10^2) \\ = -45 \ 000 \ J$$

NB: The neg. sign shows the net force is in the opposite direction to that of the displacement.

Gravitational Potential Energy

Gravitational potential energy is the energy associated with an object's position in a gravitational field.

$$E_g = mg\Delta h$$

Where E_g represents the gravitational potential energy (J) m represents the object's mass (kg) g represents the gravitational field strength = 9.8 Nkg⁻¹ on Earth Δh represents the change in height (elevation) (m)

Example.1

Calculate the gravitational potential energy of a 100 kg man who climbs a 5 m tall ladder.

 $\begin{array}{ll} E_g = ? & E_g = mg\Delta h \\ m = 100 \ kg & = 100 \times 9.8 \times 5 \\ g = 9.8 \ Nkg^{-1} & = 4900 \ J \end{array}$

Example.2

A pick-up truck is hoisted a height of 1.5 m above the ground in order for it to be serviced. Given it gains 36 750 J of gravitational potential energy in the process, what is the mass of the pick-up?

$$m = ?$$

$$E_g = 36750 J$$

$$g = 9.8 Nkg^{-1}$$

$$\Delta h = 1.5 m$$

$$E_g = mg\Delta h$$

$$\therefore m = \frac{E_g}{g\Delta h}$$

$$= \frac{36750}{9.8 \times 1.5}$$

$$= 2500 kg$$

$$\Delta h = 1.5 m$$

Conservation of Energy

A fundamental law of Physics is that **energy is always conserved** in a **closed or isolated system**. That is, it **cannot be created or destroyed**. Rather is can be converted into another energy form.

Scenario 1: Gravitational Potential Energy ↔ Kinetic Energy Conversion

Consider the following scenario: A skater of mass 60 kg is elevate a height of 6.0 m above the ground on a skateboard track, as shown below. Assume there is no friction on the track, and that the skater is initial stationary.

Question. 1

What is the total energy of the skater at the top of the track @ Point A?

$$\Sigma E_A = ?$$

$$\Sigma E_A = E_g(A) + E_k(A)$$

$$= mg\Delta h + \frac{1}{2}mv^2$$

$$= 60 \times 9.8 \times 6.0 + \frac{1}{2} \times 60 \times 0^2$$

$$= 3528 J$$
NB: @A $E_k = 0 J$

Question. 2

What is the total energy of the skater at the bottom of the track @ Point B?

 $\Sigma E_B = ?$ $\Sigma E_B = \Sigma E_A$ = 3528 J **NB**: ΣE remains constant at all locations

Question. 3

What is the speed of the skater at the bottom of the track @ Point B?

$$v_B = ?$$

$$\Sigma E_B = 3528 J$$

$$m = 60 \ kg$$

$$\Sigma E_B = E_g(B) + E_k(B)$$

$$3528 = 0 + \frac{1}{2} m v^2$$

$$\therefore v = \sqrt{\frac{3528 \times 2}{60}} = 10.8 \ ms^{-1}$$
WCE Physics
Unit 2, Area of Study 1, Handout 9
$$Mr \ Mark \ Judd$$

$$Yr \ 11 \ Physics$$

Scenario 2: Gravitational Potential Energy ↔ Kinetic Energy Conversion

Consider the following scenario: A skater of mass 60 kg is elevate a height of 6.0 m above the ground on a skateboard track, and skates to the bottom of the track as shown below.

Assume there is no friction on the track, and that the skater has a speed of 15 ms⁻¹ at the bottom of the track (Point B).

Question. 1

What is the total energy of the skater at the bottom of the track @ Point B?

$$\Sigma E_B = ?$$

$$\Sigma E_B = E_g(B) + E_k(B)$$

$$= mg\Delta h + \frac{1}{2}mv^2$$

$$= 60 \times 9.8 \times 0 + \frac{1}{2} \times 60 \times 15^2$$

$$= 6750 J$$
NB: @B $E_g = 0 J$

Question. 2

What is the total energy of the skater at the top of the track @ Point A?

 $\Sigma E_A = ?$ $\Sigma E_A = \Sigma E_B$ = 6750 J **NB**: ΣE remains constant at all locations

Question. 3

What was the initial speed of the skater at the top of the track @ Point A?

$$\begin{aligned}
\nu_A &= ? \\
\Sigma E_A &= 6750 J \\
m &= 60 kg
\end{aligned}$$

$$\begin{aligned}
\Sigma E_A &= E_g(A) + E_k(A) \\
6750 &= mg\Delta h + \frac{1}{2}mv^2 \\
6750 &= 60 \times 9.8 \times 6.0 + \frac{1}{2} \times 60 \times v^2 \\
6750 &= 3528 + 30 \times v^2 \\
\therefore v &= \sqrt{\frac{6750 - 3528}{30}} = 10.4 \, ms^{-1}
\end{aligned}$$

Yr 11 Physics

Scenario 3: Gravitational Potential Energy \leftrightarrow Kinetic Energy Conversion

Consider the following scenario: A100 kg man falls from the top of a 10 m tall ladder.

Question. 1

What is the total energy of the man at the top of the ladder?

$$\Sigma E_{top} = ?$$

$$\Sigma E_{top} = E_g(top) + E_k(top)$$

$$= mg\Delta h + \frac{1}{2}mv^2$$

$$= 100 \times 9.8 \times 10 + \frac{1}{2} \times 100 \times 0^2$$

$$= 9800 J$$

Question. 2

What is the total energy of the man at the ground following his fall?

 $\Sigma E_{ground} = ?$ $\Sigma E_{ground} = \Sigma E_{top}$ = 9800 J

NB: ΣE remains constant at all locations

Question. 3

What is the "impact speed" of the man upon hitting the ground?

$$v_{ground} = ?$$

$$\Sigma E_{ground} = 9800 J$$

$$m = 100 kg$$

$$\Sigma E_{ground} = 6 g (Ground) + E_k (Ground)$$

$$S B: @ Ground E_g = 0 J$$

$$9800 = 0 + \frac{1}{2} mv^2$$

$$9800 = 0 + \frac{1}{2} \times 100 \times v^2$$

$$\therefore v = \sqrt{\frac{9800 \times 2}{100}} = 14 ms^{-1}$$

Option: Use the "suvat" equations to solve Question 3.

 $v =? v^2 = u^2 + 2as$ $u = 0 ms^{-1} v^2 = 0^2 + 2 \times 9.8 \times 10$ $a = 9.8 ms^{-2} v^2 = 196$ $s = 10 m v = \sqrt{196}$ $= 14 ms^{-1}$

Exam Styled Questions

Questions 1 & 2 refer to the following information

The figure below shows a box of mass 5 kg being pulled along at a constant velocity by a rope held at an angle of 60° to the horizontal.

Question 1

What force must be acting on the box along the rope if the frictional force on the box is 8.0 N to the right?

$F_{rope} = ?$ $F_{net} = 0$ $\therefore F(\leftarrow) = F(\rightarrow)$ $\therefore F_{rope}(X) = F_{f}$ $\therefore Fcos(\theta) = F_{f}$	$Fcos(\theta) = F_f$ $\therefore F = \frac{F_f}{cos(\theta)}$ $= \frac{8.0}{cos(60)}$ = 16.0 N
16.0 N	= 16.0 N

Question 2

What is the work done against friction if the box is dragged 5.0 m?

W = ? $W = F_f s$ $= 8.0 \times 5.0$ = 40.0 J

40.0 J

A boy and a skateboard have a total mass of 60.0 kg. The boy is moving on the skateboard at a constant speed of 3.0 ms^{-1} along a horizontal path. He then travels through a dip in the path. The dip is an arc of a circle with a radius of 6.0 m, as shown below.

Question 3

What is the speed of the boy and the skateboard at point B?

$$\begin{split} v_B &= ? \\ \Sigma E_A &= \Sigma E_B \\ E_g(A) &+ E_k(A) &= E_g(B) + E_k(B) \\ mg \Delta h &+ \frac{1}{2}mv^2 &= 0 + \frac{1}{2}mv^2 \\ g \Delta h &+ \frac{1}{2}v^2 &= \frac{1}{2}v^2 \end{split} \qquad \begin{array}{l} 9.8 \times 6 + \frac{1}{2} \times 3^2 &= \frac{1}{2} \times v^2 \\ 63.3 &= \frac{1}{2} \times v^2 \\ v &= \sqrt{2} \times 63.3 \\ &= 11.25 \ ms^{-1} \end{split}$$

11.25 ms⁻¹

Questions 4 & 5 refer to the following information

Zelda is skateboarding at a skate park. She rolls from rest down a curved ramp with a vertical drop of 2.0 m, as shown below.

Question 4

Calculate Zelda's speed at the bottom of the curved ramp. Ignore the effects of friction. Show your working.

 $V_{bottom} = ?$ $\Delta E_g = \Delta E_k$ $mg\Delta h = \frac{1}{2}mv^2$ $g\Delta h = \frac{1}{2}v^2$ $v = \sqrt{2g\Delta h}$ $v = \sqrt{2 \times 9.8 \times 2.0}$ $= 6.26 ms^{-1}$

Question 5

If friction were significant, explain how the result from Question 4 would change.

- If friction were significant, it would do work against the motion and some useful mechanical energy would be converted to heat.
- This would mean that less energy would be available as kinetic energy.
- So Zelda would reach the bottom of the curved ramp at a lower speed.

Questions 6 - 8 refer to the following information

A roller coaster cart with a mass of 1.00 tonne is moving along a horizontal section of the track at a speed of 5.00 ms⁻¹, as shown below.

Point X is at the edge of the horizontal section of the track and has a height of 10.0 m. Point Y is the lowest point of the track. The track is designed so that the roller coaster cart will come to rest at point Z. Ignore the effects of friction.

Question 6

What is the kinetic energy of the roller coaster cart at point X? Show your working.

$$E_{k} = ?$$

$$E_{k} = \frac{1}{2}mv^{2}$$

$$= \frac{1}{2} \times 1000 \times 5.00^{2}$$

$$= 12500 J \text{ or } 1.25 \times 10^{4} J$$

$$1.\,25\times10^4\,J$$

Question 7

What is the speed of the cart at point Y? Show your working.

$$v_{Y} = ?$$

$$\Sigma E_{X} = \Sigma E_{Y}$$

$$E_{g}(X) + E_{k}(X) = E_{g}(Y) + E_{k}(Y)$$

$$mg\Delta h + \frac{1}{2}mv^{2} = 0 + \frac{1}{2}mv^{2}$$

$$g\Delta h + \frac{1}{2}v^{2} = \frac{1}{2}v^{2}$$
9.8 × 10 + $\frac{1}{2} \times 5^{2} = \frac{1}{2} \times v^{2}$
110.5 = $\frac{1}{2} \times v^{2}$

$$v = \sqrt{2 \times 110.5}$$

$$= 14.87 \text{ ms}^{-1}$$
14.87 ms⁻¹

Question 8

What is the vertical height, h, of point Z above point Y? Show your working.

$$v_Y = ?$$

$$\Sigma E_X = \Sigma E_Z$$

$$E_g(X) + E_k(X) = E_g(Z) + E_k(Z)$$

$$mg\Delta h + \frac{1}{2}mv^2 = mg\Delta h + 0$$

$$g\Delta h + \frac{1}{2}v^2 = g\Delta h$$

$$9.8 \times 10 + \frac{1}{2} \times 5.00^2 = 9.8 \times \Delta h$$

$$110.5 = 9.8 \times \Delta h$$

$$\therefore \Delta h = \frac{110.5}{9.8}$$

$$= 11.28 m$$

11.28 m

