## Work

In Physics terms, work is done when a force is applied to an object causing it to displace in the direction of the force.

$$
W=F s \cos \theta
$$

```
Where W represents Work (Joules)
    F}\mathrm{ represents Force (N)
    S}\mathrm{ represents displacement (m)
    0}\mathrm{ represents the angle between the force and displacement ( }\mp@subsup{}{}{\circ
```

NB: 1 Joule $=1 \mathrm{Nm}$

## Example. 1

Calculate the work done upon an object when a force of 200 N is applied, causing it to displace 5 m .


$$
\begin{aligned}
& W=? \\
& F=200 \mathrm{~N} \\
& s=5 \mathrm{~m}
\end{aligned}
$$

$$
W=F s
$$

$$
=200 \times 5
$$

$$
=1000 \mathrm{~J}
$$

NB: As both the force and displacement are parallel, $\cos \left(0^{\circ}\right)=1$

## Example. 2

Calculate the work done upon a box that is pulled by a 1000 N force at an angle of $40^{\circ}$ from the horizontal, given it is displaced by 10 m .

$W=$ ?
$W=F s \cos \theta$
$F=1000 N \quad=1000 \times 10 \times \cos (40$ )
$s=10 \mathrm{~m}$
$=7660 \mathrm{~J}$ or 7.66 kJ
$\theta=40^{\circ}$
NB: As force and displacement are not parallel, $\cos \left(\theta^{\circ}\right)$ must be included

## Force - Displacement Graph

Not every system involves a constant force being applied upon an object resulting in a displacement. In fact, often the applied force varies as an object is displaced. In which case the work done upon an object can be found via a force - displacement graph.

$$
W=\text { Area under graph }
$$

Where $\boldsymbol{W}$ represents Work (Joules)


## Example. 1

Calculate the work done on the object displayed in the above graph as it is displaced from 0 to 10.0 m .

$$
\begin{aligned}
W & =? \\
W & =\text { Area under graph } \\
& =\frac{1}{2} B H[\text { Area of a triangle }] \\
& =\frac{1}{2} \times 10.0 \times 30 \\
& =\mathbf{1 5 0} \mathbf{J}
\end{aligned}
$$

## Example. 2

A stationary object has a varying force applied to it as shown in the below force - displacement graph. Calculate the work done on the object displayed in the above graph as it is displaced from 0 to 10.0 m .

$$
\begin{aligned}
W & =? \\
W & =\text { Area under graph } \\
& =\frac{1}{2}(a+b) h[\text { Area of a trapezium }] \\
& =\frac{1}{2} \times(2+10) \times 6 \\
& =36 \mathrm{~J}
\end{aligned}
$$



## Kinetic Energy

Kinetic energy is the energy associated with an object's motion.

$$
E_{k}=\frac{1}{2} m v^{2}
$$

## Where $\boldsymbol{E}_{\boldsymbol{k}}$ represents the kinetic energy (J)

$\boldsymbol{m}$ represents the object's mass (kg)
$v$ represents the object's speed $\left(\mathrm{ms}^{-1}\right)$

## Example. 1

Calculate the kinetic energy of the Falcon 9 rocket of mass 549 tonne at a top speed of $9.31 \times 10^{3} \mathrm{~ms}^{-1}$ upon launch.
$E_{k}=$ ?
$m=549 \times 10^{3} \mathrm{~kg}$
$v=9.31 \times 10^{3} \mathrm{~ms}^{-1}$

$$
\begin{aligned}
E k & =\frac{1}{2} m v^{2} \\
& =\frac{1}{2} \times 549 \times 10^{3} \times\left(\mathbf{9 . 3 1} \times \mathbf{1 0}^{\mathbf{3}}\right)^{2} \\
& =\mathbf{2} . \mathbf{3 8} \times \mathbf{1 0}^{\mathbf{1 3}} \mathrm{J}
\end{aligned}
$$

## Example. 2



Calculate the kinetic energy of an electron travelling at one tenth the speed of light.
NB: For this example we are ignoring relativistic mass.
$E_{k}=? \quad E k=\frac{1}{2} m v^{2}$
$m_{e}=9.1 \times 10^{-31} \mathrm{~kg}$
$v=3.0 \times 10^{7} \mathrm{~ms}^{-1}$
$=\frac{1}{2} \times 9.1 \times 10^{-31} \times\left(3.0 \times 10^{7}\right)^{2}$
$=4.1 \times 10^{-16} \mathrm{~J}$


A linear accelerator - LINAC

## Example. 3

Calculate the work done by friction to stop a 900 kg car rolling initially at $10 \mathrm{~ms}^{-1}$.
$W=$ ?
$m=900 \mathrm{~kg}$

$$
\begin{aligned}
W_{\text {fric }} & =\Delta E k \\
& =E k(f)-E k(i) \\
& =\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2} \\
& =\frac{1}{2} m\left(v^{2}-u^{2}\right) \\
& =\frac{1}{2} \times 900 \times\left(0^{2}-10^{2}\right) \\
& =-45000 \mathrm{~J}
\end{aligned}
$$

NB: The neg. sign shows the net force is in the opposite direction to that of the displacement.

## Gravitational Potential Energy

Gravitational potential energy is the energy associated with an object's position in a gravitational field.

$$
E_{g}=m g \Delta h
$$

## Where $\boldsymbol{E}_{\boldsymbol{g}}$ represents the gravitational potential energy $(\boldsymbol{J})$

$\boldsymbol{m}$ represents the object's mass ( $\mathbf{k g}$ )
$\boldsymbol{g}$ represents the gravitational field strength $=\mathbf{9 . 8} \mathbf{N k g}^{\mathbf{1}}$ on Earth
$\Delta \boldsymbol{h}$ represents the change in height (elevation) ( $\boldsymbol{m}$ )

## Example. 1

Calculate the gravitational potential energy of a 100 kg man who climbs a 5 m tall ladder.
$E_{g}=$ ?
$m=100 \mathrm{~kg}$

$$
g=9.8 \mathrm{Nkg}^{-1}
$$

$$
\Delta h=5 \mathrm{~m}
$$

$$
\begin{aligned}
E_{g} & =m g \Delta h \\
& =100 \times 9.8 \times 5 \\
& =4900 \mathrm{~J}
\end{aligned}
$$



## Example. 2

A pick-up truck is hoisted a height of 1.5 m above the ground in order for it to be serviced.
Given it gains 36750 J of gravitational potential energy in the process, what is the mass of the pickup?
$m=$ ?
$E_{g}=36750 \mathrm{~J}$
$g=9.8 \mathrm{Nkg}^{-1}$
$\Delta h=1.5 \mathrm{~m}$

$$
\begin{aligned}
E_{g} & =m g \Delta h \\
\therefore m & =\frac{E_{g}}{g \Delta h} \\
& =\frac{36750}{9.8 \times 1.5} \\
& =\mathbf{2 5 0 0} \mathbf{~ k g}
\end{aligned}
$$



## Conservation of Energy

A fundamental law of Physics is that energy is always conserved in a closed or isolated system. That is, it cannot be created or destroyed. Rather is can be converted into another energy form.

## Scenario 1: Gravitational Potential Energy $\leftrightarrow$ Kinetic Energy Conversion

Consider the following scenario: A skater of mass 60 kg is elevate a height of 6.0 m above the ground on a skateboard track, as shown below. Assume there is no friction on the track, and that the skater is initial stationary.


## Question. 1

What is the total energy of the skater at the top of the track @ Point A?
$\Sigma E_{A}=$ ?
$\Sigma E_{A}=E_{g}(A)+E_{k}(A)$
$=m g \Delta h+\frac{1}{2} m v^{2}$
$=60 \times 9.8 \times 6.0+\frac{1}{2} \times 60 \times 0^{2}$
$=3528 \mathrm{~J}$

## Question. 2

What is the total energy of the skater at the bottom of the track @ Point B?
$\Sigma E_{B}=$ ?
$\Sigma E_{B}=\Sigma E_{A}$

$$
=3528 \mathrm{~J}
$$

## Question. 3

What is the speed of the skater at the bottom of the track @ Point B?
$v_{B}=$ ?
$\Sigma E_{B}=3528 \mathrm{~J}$
$m=60 \mathrm{~kg}$

$$
\begin{aligned}
& \Sigma E_{B}=E_{g}(B)+E_{k}(B) \\
& 3528=0+\frac{1}{2} m v^{2} \\
& \therefore v=\sqrt{\frac{3528 \times 2}{60}}=\mathbf{1 0 . 8} \mathbf{m s}^{\mathbf{- 1}}
\end{aligned}
$$

NB: @B $E_{g}=0 J$

## Scenario 2: Gravitational Potential Energy $\leftrightarrow$ Kinetic Energy Conversion

Consider the following scenario: A skater of mass 60 kg is elevate a height of 6.0 m above the ground on a skateboard track, and skates to the bottom of the track as shown below.
Assume there is no friction on the track, and that the skater has a speed of $15 \mathrm{~ms}^{-1}$ at the bottom of the track (Point B).


## Question. 1

What is the total energy of the skater at the bottom of the track @ Point B?
$\Sigma E_{B}=$ ?
$\Sigma E_{B}=E_{g}(B)+E_{k}(B)$
NB: @B $E_{g}=0 J$
$=m g \Delta h+\frac{1}{2} m v^{2}$
$=60 \times 9.8 \times 0+\frac{1}{2} \times 60 \times 15^{2}$
$=6750 \mathrm{~J}$

Question. 2
What is the total energy of the skater at the top of the track @ Point A?
$\Sigma E_{A}=$ ?
$\Sigma E_{A}=\Sigma E_{B}$
$=6750 \mathrm{~J}$
NB: $\Sigma$ E remains constant at all locations

Question. 3
What was the initial speed of the skater at the top of the track @ Point A?
$v_{A}=$ ?
$\Sigma E_{A}=6750 \mathrm{~J}$
$m=60 \mathrm{~kg}$

$$
\begin{aligned}
& \Sigma E_{A}=E_{g}(A)+E_{k}(A) \\
& 6750=m g \Delta h+\frac{1}{2} m v^{2} \\
& 6750=60 \times 9.8 \times 6.0+\frac{1}{2} \times 60 \times v^{2} \\
& 6750=3528+30 \times v^{2} \\
& \therefore v=\sqrt{\frac{6750-3528}{30}}=\mathbf{1 0 . 4} \mathbf{m s}^{\mathbf{- 1}}
\end{aligned}
$$

## Scenario 3: Gravitational Potential Energy $\leftrightarrow$ Kinetic Energy Conversion

Consider the following scenario: A100 kg man falls from the top of a 10 m tall ladder.

## Question. 1

What is the total energy of the man at the top of the ladder?

$$
\begin{aligned}
\Sigma E_{\text {top }} & =? \\
\Sigma E_{\text {top }} & =E_{g}(\text { top })+E_{k}(\text { top }) \\
& =m g \Delta h+\frac{1}{2} m v^{2} \\
& =100 \times 9.8 \times 10+\frac{1}{2} \times 100 \times 0^{2} \\
& =\mathbf{9 8 0 0} \mathbf{J}
\end{aligned}
$$



Question. 2
What is the total energy of the man at the ground following his fall?

$$
\begin{aligned}
\Sigma E_{\text {ground }} & =? \\
\Sigma E_{\text {ground }} & =\Sigma E_{\text {top }} \\
& =\mathbf{9 8 0 0} \mathbf{J}
\end{aligned}
$$

## Question. 3

What is the "impact speed" of the man upon hitting the ground?
$v_{\text {ground }}=$ ?
$\Sigma E_{\text {ground }}=9800 \mathrm{~J}$
$m=100 \mathrm{~kg}$

$$
\begin{aligned}
& \Sigma E_{\text {ground }}=E_{g}(\text { Ground })+E_{k}(\text { Ground }) \quad \text { NB: } @ \text { Ground } E_{g}=0 J \\
& 9800=0+\frac{1}{2} m v^{2} \\
& 9800=0+\frac{1}{2} \times 100 \times v^{2} \\
& \therefore v=\sqrt{\frac{9800 \times 2}{100}}=\mathbf{1 4} \mathbf{m s}^{-\mathbf{1}}
\end{aligned}
$$

Option: Use the "suvat" equations to solve Question 3.
$v=$ ?
$u=0 \mathrm{~ms}^{-1}$
$a=9.8 \mathrm{~ms}^{-2}$
$s=10 m$
$v^{2}=u^{2}+2 a s$
$v^{2}=0^{2}+2 \times 9.8 \times 10$

$$
v^{2}=196
$$

$\therefore v=\sqrt{196}$

$$
=14 \mathrm{~ms}^{-1}
$$

## Exam Styled Questions

## Questions $1 \& 2$ refer to the following information

The figure below shows a box of mass 5 kg being pulled along at a constant velocity by a rope held at an angle of $60^{\circ}$ to the horizontal.


## Question 1

What force must be acting on the box along the rope if the frictional force on the box is 8.0 N to the right?
$F_{\text {rope }}=$ ?
$F_{n e t}=0$
$\therefore F(\leftarrow)=F(\rightarrow)$
$\therefore F_{\text {rope }}(X)=F_{f}$
$\therefore F \cos (\theta)=F_{f}$

$$
\begin{aligned}
& F \cos (\theta)=F_{f} \\
& \begin{aligned}
\therefore F & =\frac{F_{f}}{\cos (\theta)} \\
& =\frac{8.0}{\cos (60)} \\
& =16.0 \mathrm{~N}
\end{aligned}
\end{aligned}
$$

### 16.0 N

## Question 2

What is the work done against friction if the box is dragged 5.0 m ?

$$
\begin{aligned}
W & =? \\
W & =F_{f} S \\
& =8.0 \times 5.0 \\
& =40.0 \mathrm{~J}
\end{aligned}
$$

### 40.0 J

A boy and a skateboard have a total mass of 60.0 kg . The boy is moving on the skateboard at a constant speed of $3.0 \mathrm{~ms}^{-1}$ along a horizontal path. He then travels through a dip in the path. The dip is an arc of a circle with a radius of 6.0 m , as shown below.


## Question 3

What is the speed of the boy and the skateboard at point B ?
$v_{B}=$ ?
$\Sigma E_{A}=\Sigma E_{B}$
$E_{g}(A)+E_{k}(A)=E_{g}(B)+E_{k}(B)$
$m g \Delta h+\frac{1}{2} m v^{2}=0+\frac{1}{2} m v^{2}$
$g \Delta h+\frac{1}{2} v^{2}=\frac{1}{2} v^{2}$

$$
\begin{aligned}
& 9.8 \times 6+\frac{1}{2} \times 3^{2}=\frac{1}{2} \times v^{2} \\
& 63.3=\frac{1}{2} \times v^{2} \\
& v=\sqrt{2 \times 63.3} \\
& \quad=11.25 \mathrm{~ms}^{-1}
\end{aligned}
$$

## Questions 4 \& 5 refer to the following information

Zelda is skateboarding at a skate park. She rolls from rest down a curved ramp with a vertical drop of 2.0 m , as shown below.


## Question 4

Calculate Zelda's speed at the bottom of the curved ramp. Ignore the effects of friction. Show your working.
$V_{\text {bottom }}=$ ?

$$
\begin{aligned}
v & =\sqrt{2 \times 9.8 \times 2.0} \\
& =6.26 \mathrm{~ms}^{-1}
\end{aligned}
$$

$\Delta E_{g}=\Delta E_{k}$
$m g \Delta h=\frac{1}{2} m v^{2}$
$g \Delta h=\frac{1}{2} v^{2}$
$v=\sqrt{2 g \Delta h}$

## $6.26 \mathrm{~ms}^{-1}$

## Question 5

If friction were significant, explain how the result from Question 4 would change.

- If friction were significant, it would do work against the motion and some useful mechanical energy would be converted to heat.
- This would mean that less energy would be available as kinetic energy.
- So Zelda would reach the bottom of the curved ramp at a lower speed.


## Questions 6-8 refer to the following information

A roller coaster cart with a mass of 1.00 tonne is moving along a horizontal section of the track at a speed of $5.00 \mathrm{~ms}^{-1}$, as shown below.


Point X is at the edge of the horizontal section of the track and has a height of 10.0 m . Point Y is the lowest point of the track. The track is designed so that the roller coaster cart will come to rest at point Z . Ignore the effects of friction.

## Question 6

What is the kinetic energy of the roller coaster cart at point X ?
Show your working.

$$
\begin{aligned}
E_{k} & =? \\
E_{k} & =\frac{1}{2} m v^{2} \\
& =\frac{1}{2} \times 1000 \times 5.00^{2} \\
& =12500 \mathrm{~J} \text { or } 1.25 \times 10^{4} \mathrm{~J}
\end{aligned}
$$

$$
1.25 \times 10^{4} \mathrm{~J}
$$

## Question 7

What is the speed of the cart at point Y ?
Show your working.
$v_{Y}=$ ?
$\Sigma E_{X}=\Sigma E_{Y}$
$E_{g}(X)+E_{k}(X)=E_{g}(Y)+E_{k}(Y)$
$m g \Delta h+\frac{1}{2} m v^{2}=0+\frac{1}{2} m v^{2}$
$g \Delta h+\frac{1}{2} v^{2}=\frac{1}{2} v^{2}$

## $14.87 \mathrm{~ms}^{-1}$

$$
\begin{aligned}
& 9.8 \times 10+\frac{1}{2} \times 5^{2}=\frac{1}{2} \times v^{2} \\
& 110.5=\frac{1}{2} \times v^{2} \\
& v=\sqrt{2 \times 110.5} \\
& \quad=14.87 \mathrm{~ms}^{-1}
\end{aligned}
$$

## Question 8

What is the vertical height, $h$, of point $Z$ above point $Y$ ? Show your working.

$$
\begin{aligned}
& v_{Y}=? \\
& \Sigma E_{X}=\Sigma E_{Z} \\
& E_{g}(X)+E_{k}(X)=E_{g}(Z)+E_{k}(Z) \\
& m g \Delta h+\frac{1}{2} m v^{2}=m g \Delta h+0 \\
& g \Delta h+\frac{1}{2} v^{2}=g \Delta h \\
& 9.8 \times 10+\frac{1}{2} \times 5.00^{2}=9.8 \times \Delta h \\
& 110.5=9.8 \times \Delta h \\
& \therefore \Delta h=\frac{110.5}{9.8} \\
& \quad=11.28 \mathrm{~m}
\end{aligned}
$$

### 11.28 m

