Section 2.1.2 - Graphing Motion

Motion Graphs

Physicists use motion graphs in order to accurately describe an objects motion, relative to time. There are three main graphs analysed at the VCE level of study.
\checkmark Displacement - Time Graph
\checkmark Velocity - Time Graph
\checkmark Acceleration - Time Graph
NB: For all motion graphs consider what the gradient and area under graph represents!
Displacement - Time Graph

Section A Period of constant (uniform) velocity
Section B Stationary (constant velocity of $0 \mathrm{~ms}^{-1}$)
Section C Period of non-uniform increasing velocity (acceleration)
Section D Stationary (constant velocity of $0 \mathrm{~ms}^{-1}$)

Summary Table: Displacement - Time Graph

Feature	Quantity	How to find
Individual point	Displacement at a particular time	Draw a dotted line from a point to each axis and read off values
Area under graph	\mathbf{x}	
Gradient between two points	Average velocity	$v_{\text {avg }}=$ gradient $=\frac{s_{2}-s_{1}}{t_{2}-t_{1}}=\frac{\Delta s}{\Delta t}$

Example. 1

Consider the below displacement v time graph.

Qn. 1 What was the objects displacement after 5 seconds?
Reading off the graph, @a time of 5 seconds, the object's displacement $=4 \mathrm{~m}$ North
Qn. 2 What was the objects displacement after 10 seconds?
Reading off the graph, @ a time of 10 seconds, the object's displacement $=-8 \mathrm{~m}$ North (or 8 m South)
Qn. 3 How far did the object travel over the 10 second journey?
$8 \mathrm{~m}+8 \mathrm{~m}+8 \mathrm{~m}=24 \mathrm{~m}$
Qn. 4 What was the object's average velocity between $\mathrm{t}=0 \mathrm{~s}$ and $\mathrm{t}=2 \mathrm{~s}$?

$$
\begin{array}{ll}
\begin{array}{ll}
v_{\text {avg }}=? & v_{\text {avg }}
\end{array} & =\text { gradient }=\frac{s_{2}-s_{1}}{t_{2}-t_{1}}=\frac{\Delta s}{\Delta t}=8 \mathrm{~m} \\
\begin{aligned}
\Delta t=2 \mathrm{sec} &
\end{aligned} & =\frac{8}{2} \\
&
\end{array}
$$

Qn. 5 What was the object's average velocity between $\mathrm{t}=6 \mathrm{~s}$ and $\mathrm{t}=8 \mathrm{~s}$?

$$
\begin{array}{ll}
v_{\text {avg }}=? & v_{\text {avg }}
\end{array}=\text { gradient }=\frac{s_{2}-s_{1}}{t_{2}-t_{1}}=\frac{\Delta s}{\Delta t} \begin{array}{ll}
\Delta s=8 \mathrm{~m} \\
\Delta t=2 \mathrm{sec} & \\
& =\frac{-8}{2} \\
& =-4 \mathrm{~ms}^{-1} \text { North }\left(4 \mathrm{~ms}^{-1} \text { South }\right)
\end{array}
$$

Qn. 6 At what time did the object first commence moving in a southerly direction?
Reading off the graph, the object first commenced moving southerly at $\mathrm{t}=4$ seconds.

Velocity - Time Graph

Section A Period of constant (uniform) acceleration
Section B Period of constant (uniform) velocity
Section C Period of non-uniform increasing acceleration
Section D Period of constant (uniform) velocity
NB: At no point on the above graph is the object stationary
Summary Table: Velocity - Time Graph

Feature	Quantity	How to find
Individual point	Velocity at a particular time	Draw a dotted line from the point to each axis and read off values
Signed area under the graph	Displacement	Geometric method Or counting squares method (curved shapes)
Total area under the graph	Distance travelled	Geometric method Or counting squares method (curved shapes)
Gradient between two points	Average acceleration	$a_{\text {avg }}=$ gradient $=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}=\frac{\Delta v}{\Delta t}$

Example. 2

Consider the below velocity - time graph.

Qn. 1 What was the objects velocity at $\mathrm{t}=4$ seconds?
Reading off the graph, @ a time of 4 seconds, the object's velocity $=20 \mathrm{~ms}^{-1}$ North
Qn. 2 What was the objects velocity at $\mathrm{t}=10$ seconds?
Reading off the graph, @ a time of 10 seconds, the object's velocity $=-20 \mathrm{~ms}^{-1}$ North or $20 \mathrm{~ms}^{-1}$ South
Qn. 3 How far did the object travel over the 10 second journey?

Distance $=$?

$$
\begin{aligned}
\text { Distance } & =\text { Total area } \\
& =\text { Trapezium }(0-8 \text { sec })+\text { Triangle }(8-10 \mathrm{sec}) \\
& =\left[\frac{1}{2}(a+b) h\right]+\left[\frac{1}{2} \text { bh }\right] \\
& =\left[\frac{1}{2}(2+8) \times 20\right]+\left[\frac{1}{2} \times 2 \times 20\right] \\
& =100+20 \\
& =120 \mathrm{~m}
\end{aligned}
$$

Qn. 4 What was the objects displacement after the 10 second journey?

$$
\begin{aligned}
\text { Displacement }(s)=? & =\text { Area above the } x \text { axis }- \text { Area below the } x \text { axis } \\
& =\text { Trapezium }(0-8 \text { sec })-\text { Triangle }(8-10 \mathrm{sec}) \\
& =\left[\frac{1}{2}(a+b) h\right]-\left[\frac{1}{2} \mathrm{bh}\right] \\
& =\left[\frac{1}{2}(2+8) \times 20\right]-\left[\frac{1}{2} \times 2 \times 20\right] \\
& =100-20 \\
& =80 \mathrm{~m} \text { North }
\end{aligned}
$$

Qn. 5 What was the object's average acceleration between $t=0 \mathrm{~s}$ and $\mathrm{t}=4 \mathrm{~s}$?

$$
\begin{array}{ll}
a_{a v g}=? & a_{\text {avg }}
\end{array}=\text { gradient }=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}=\frac{\Delta v}{\Delta t} \begin{aligned}
& \Delta v=20 \mathrm{~ms}^{-1} \\
& \begin{aligned}
\Delta t=4 \mathrm{sec} & \\
& =\frac{20}{4} \\
& =5 \mathrm{~ms}^{-2} \text { North }
\end{aligned}
\end{aligned}
$$

Qn. 6 What was the object's average acceleration between $\mathrm{t}=8 \mathrm{~s}$ and $\mathrm{t}=10 \mathrm{~s}$?

$$
\begin{array}{ll}
a_{a v g}=? & a_{\text {avg }}
\end{array}=\text { gradient }=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}=\frac{\Delta v}{\Delta t}
$$

Qn. 7 At what time did the object first commence moving in a southerly direction?
Reading off the graph, the object first commenced moving southerly at $\mathrm{t}=8$ seconds.
NB: The object is moving southerly when the graph line falls below the x axis.

Acceleration - Time Graph

Acceleration (ms^{-2})

Section A Period of constant (uniform) positive acceleration
Section B Period of constant velocity (no acceleration)
Section C Period of constant (uniform) negative acceleration

Summary Table: Acceleration - Time Graph

Feature	Quantity	How to find
Individual point	Acceleration at a particular time	Draw a dotted line from the point to each axis and read off values
Area under the graph	Change in velocity	Geometric method Or counting squares method (curved shapes)
Gradient between two points	\mathbf{x}	\mathbf{x}

Example. 3

Consider the below acceleration - time graph.

Qn. 1 What was the objects acceleration at $\mathrm{t}=2$ seconds?
Reading off the graph, @a time of 2 seconds, the object's acceleration $=2 \mathrm{~ms}^{-2}$ North
Qn. 2 What was the objects acceleration at $\mathrm{t}=10$ seconds?
Reading off the graph, @a time of 10 seconds, the object's acceleration $=-3 \mathrm{~ms}^{-2}$ North or $3 \mathrm{~ms}^{-2}$ South

Qn. 3 What was the object's change in velocity between $\mathrm{t}=0 \mathrm{sec}$ and $\mathrm{t}=3 \mathrm{sec}$?
$\Delta v=$?

$$
\begin{aligned}
\Delta v & =\text { area } \\
& =\text { Rectangle }(0-3 \mathrm{sec}) \\
& =b \times h \\
& =3 \times 2 \\
& =6 \mathrm{~ms}^{-1} \text { North }
\end{aligned}
$$

Qn. 4 What was the object's change in velocity between $\mathrm{t}=7 \mathrm{sec}$ and $\mathrm{t}=10 \mathrm{sec}$?
$\Delta v=$?

$$
\begin{aligned}
\Delta v & =\text { area } \\
& =\text { Rectangle }(7-10 \mathrm{sec}) \\
& =b \times h \\
& =3 \times-3 \\
& =-9 \mathrm{~ms}^{-1} \text { North or } 9 \mathrm{~ms}^{-1} \text { South }
\end{aligned}
$$

Exam Style Questions

Questions 1 to 5 refer to the following information

The Doc is travelling to work in peak hour traffic. He is stopped at a set of traffic lights. When the light turns green he travels forward in the traffic until he comes to another red light and stops again.

A graph of the velocity of this part of his trip is given below

Question 1.

What is the Doc's speed at $\mathrm{t}=5$ seconds?
Reading off the graph, at a time of 5 seconds the corresponding velocity is $8 \mathrm{~ms}^{-1}$
$8.0 \mathrm{~ms}^{-1}$

Question 2.

What is the magnitude of Doc's acceleration at $\mathrm{t}=5$ seconds?
Acceleration at 5 seconds is measured by the gradient of the graph at that time
Acceleration $=\frac{\text { Rise }}{R u n}=\frac{\Delta V}{\Delta t}=\frac{16}{10}=1.6 \mathrm{~ms}^{-2}$
$1.6 \mathrm{~ms}^{-2}$

Question 3.

How far did the Doc travel in his journey between the two sets of traffic lights?
Area is found by calculating the area under the velocity - time graph
This can be done by breaking the graphs area into a combination of triangles and rectangles.
Alternatively the number of squares can be counted and multiplied by the area of one single square.
45.5 squares
@ 10 m per square
\therefore total area $=45.5 \times 10$

$$
=455 \mathrm{~m}
$$

455 m

Question 4.

What was the Doc's average speed for his 45 second journey?
Average speed $=\frac{\text { distance }}{\text { time }}=\frac{455}{45}=10.1 \mathrm{~ms}^{-1}$
$10.1 \mathrm{~ms}^{-1}$

Question 5.

On the following axes carefully draw the acceleration - time graph for the Doc's journey.

Questions 6 to 10 refer to the following information

Joffa is peddling like crazy as he is running late for school, and he knows he has Physics in period 1.
A graph of Joffa's speed for a 45 second section of his trip is given below.

Question 6.
What is Joffa's highest speed?
Reading off the graph, the highest speed is $15 \mathrm{~ms}^{-1}$
\square

Question 7.
What is the magnitude of Joffa's highest positive acceleration?
The highest positive acceleration (gradient) occurs between 0-15 seconds.
Acceleration $=\frac{\text { Rise }}{R u n}=\frac{\Delta V}{\Delta t}=\frac{15}{15}=1.0 \mathrm{~ms}^{-2}$
\square

Question 8.

How far did Joffa travel in this section of his journey to school?
Area is found by calculating the area under the velocity - time graph
In this case the shape under the graph is a simple trapezium.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2}(\mathrm{a}+\mathrm{b}) \mathrm{h} \\
& =\frac{1}{2}(20+45) 15
\end{aligned}
$$

$$
487.5 \mathrm{~m}
$$

Question 9.

What was Joffa's average speed for this 45 second section of his journey?
Average speed $=\frac{\text { distance }}{\text { time }}=\frac{487.5}{45}=10.8 \mathrm{~ms}^{-1}$

$$
10.8 \mathrm{~ms}^{-1}
$$

Question 10.

On the following axes carefully draw the acceleration - time graph for this 45 second section of Joffa's journey. Add a scale to the y-axis.

Question 11.

The Doc's old Kombi van is a bit of a snail and takes 21 seconds to reach a speed of $60 \mathrm{kmh}^{-1}$ from rest. Assuming it accelerates at a constant rate what is the magnitude of the Kombi's acceleration in ms^{-2} ?

Acceleration $=$?
Δ velocity $=60 \mathrm{kmh}^{-1}$

$$
\begin{aligned}
& =(60 / 3.6) \\
& =16.67 \mathrm{~ms}^{-1}
\end{aligned}
$$

$\Delta t=21 \mathrm{sec}$

Acceleration $=\frac{\Delta V}{\Delta t}=\frac{16.67}{21}=0.79 \mathrm{~ms}^{-2}$
$0.79 \mathrm{~ms}^{-2}$

