Circuits can be classified as either *series* or *parallel*;

### **Series Circuit**

In a series circuit, coulombs of charge have only **one possible path** along which to travel. The circuit consists of one **continuous loop**.



### Within a *series circuit*:

- The current remains constant:  $I_T = I_1 = I_2 = I_3$
- The sum ( $\Sigma$ ) of the voltage drops of each component = Total (supply) voltage  $V_T = V_1 + V_2 + V_3$
- The Total (effective) resistance = the sum ( $\Sigma$ ) of the individual resistances  $R_T = R_1 + R_2 + R_3$
- The Total power = the sum ( $\Sigma$ ) of the power given off by the individual resistances  $P_T = P_1 + P_2 + P_3$



- **Task.1** A circuit consists of three resistors connected in series (100  $\Omega$ , 240  $\Omega$  & 140  $\Omega$ ) to a 240 Volt DC supply
  - **1.** Draw a circuit diagram
  - 2. Calculate the total resistance (R<sub>T</sub>)
  - 3. Calculate the current running through each resistor
  - 4. Calculate the voltage drop across each resistor
  - 5. Calculate the power given off (dissipated) by each resistor
- 1. Circuit diagram



- 2.  $R_T = ?$   $R_1 = 100 \Omega$   $R_2 = 240 \Omega$   $R_3 = 140 \Omega$   $R_1 = R_1 + R_2 + R_3$   $R_1 = R_1 + R_2 + R_3$   $R_1 = 100 + 240 + 140$  $R_2 = 480 \Omega$
- 3. Consider the <u>entire circuit</u> (as I is constant anywhere in the circuit)

$$V_T = 240 V \qquad V_T = IR_T$$

$$R_T = 480 \Omega \qquad \therefore I = \frac{V_T}{R_T}$$

$$= \frac{240}{480} = 0.5$$

## 4. The voltage drop across each resistor

| <i>V</i> (100 Ω) |                    | V(240 Ω)           |                    | V(140 Ω)           |                    |
|------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| V = ?            | V = IR             | V = ?              | V = IR             | V = ?              | V = IR             |
| $R = 100 \Omega$ | $= 0.5 \times 100$ | $R = 240 \ \Omega$ | $= 0.5 \times 240$ | $R = 140 \ \Omega$ | $= 0.5 \times 140$ |
| I = 0.5 A        | = 50 V             | I = 0.5 A          | = 120 V            | I = 0.5 A          | = 70 V             |

A

NB:  $\Sigma$  voltage drops = 50 V + 120 V + 70 V = 240 V =  $V_T$ 

5. The power given off each resistor

| <i>P</i> (100 Ω) |                   | <i>P</i> (240 Ω) |                    | <i>P</i> (140 Ω) |                   |
|------------------|-------------------|------------------|--------------------|------------------|-------------------|
| P = ?            | P = VI            | P = ?            | P = VI             | P = ?            | P = VI            |
| V = 50 V         | $= 50 \times 0.5$ | V = 120  V       | $= 120 \times 0.5$ | V = 70 V         | $= 70 \times 0.5$ |
| I = 0.5 A        | = 25 W            | I = 0.5 A        | = 60 W             | I = 0.5 A        | = 35 W            |

### NB: $\Sigma$ power dissipated = 25 W + 60 W + 35 W = 120 W = $P_T$

VCE Physics Unit 1, Area of Study 2, Handout 2



### **Parallel Circuit**

In a parallel circuit, coulombs of charge have *multiple pathways* along which to travel. The circuit consists of *one or more branches*.



## Within a *parallel circuit*:

- The sum ( $\Sigma$ ) of the current in each branch = Total (supply) current  $I_T = I_1 + I_2 + I_3$
- The voltage drop across each branch = Total (supply) voltage  $V_T = V_1 = V_2 = V_3$
- The Total (effective) resistance  $R_T = \left(R_1^{-1} + R_2^{-1} + R_3^{-1}\right)^{-1}$
- The Total power = the sum ( $\Sigma$ ) of the power given off by the individual resistances  $P_T = P_1 + P_2 + P_3$



- **Task.2** A circuit consists of three resistors connected in parallel (120  $\Omega$ , 60  $\Omega$  & 40  $\Omega$ ) to a 240 Volt DC supply
  - Draw a circuit diagram 1.
  - **2.** Calculate the total resistance  $(R_T)$
  - 3. Calculate the voltage drop across each resistor
  - 4. Calculate the current running through each resistor
  - 5. Calculate the power given off (dissipated) by each resistor
- 1. Circuit diagram



- $R_{T} = ?$ 2.  $R_1 = 120 \Omega$  $R_2 = 60 \Omega$  $R_3 = 40 \Omega$
- $R_T = (R_1^{-1} + R_2^{-1} + R_3^{-1})^{-1}$ = (120^{-1} + 60^{-1} + 40^{-1})^{-1}  $= 20 \Omega$
- 3. By definition, the voltage in each branch will be equal to that of the total (supply) voltage.  $V_T = 240 V$  $\therefore V(120 \Omega) = V(60 \Omega) = V(40 \Omega) = V_T = 240 V$
- 4. The current running through each resistor

| <i>I</i> (120 Ω) |                              | <i>I</i> (60 Ω) |                              | <i>I</i> (40 Ω)   |                              |
|------------------|------------------------------|-----------------|------------------------------|-------------------|------------------------------|
| I = ?            | V = IR                       | I = ?           | V = IR                       | I = ?             | V = IR                       |
| $R = 120 \Omega$ |                              | $R = 60 \Omega$ |                              | $R = 40 \ \Omega$ | V                            |
| V = 240 V        | $\therefore I = \frac{1}{R}$ | V = 240 V       | $\therefore I = \frac{1}{R}$ | V = 240 V         | $\therefore I = \frac{1}{R}$ |
|                  | 240                          |                 | 240                          |                   | 240                          |
|                  | $=\frac{120}{120}$           |                 | $=\frac{1}{60}$              |                   | $=\frac{1}{40}$              |
|                  | = 2.0 A                      |                 | = 4.0 A                      |                   | = 6.0 A                      |

NB:  $\Sigma$  branch currents = 2.0 A + 4.0 A + 6.0 A = 12.0 A =  $I_T$ 

5. The power given off each resistor

| <b>P</b> (120 Ω)                                                        |                    | <i>P</i> (60 Ω)    |                    | <i>P</i> (40 Ω) |                    |
|-------------------------------------------------------------------------|--------------------|--------------------|--------------------|-----------------|--------------------|
| P = ?                                                                   | P = VI             | P = ?              | P = VI             | P = ?           | P = VI             |
| V = 240 V                                                               | $= 240 \times 2.0$ | $V = 240 \ \Omega$ | $= 240 \times 4.0$ | V = 240 V       | $= 240 \times 6.0$ |
| I = 2.0 A                                                               | = 480 W            | I = 4.0 A          | = 960 W            | I = 6.0 A       | = 1440 W           |
| NB: $\Sigma$ power dissipated = 480 W + 960 W + 1440 W = 2880 W = $P_T$ |                    |                    |                    |                 |                    |



### The Voltage Divider

A voltage divider is a relatively simple circuit comprising of two (or more) resistors  $(R_1, R_2 \dots R_n)$  placed in *series*. An *input voltage*  $(V_{in})$  is applied and a reduced *output voltage*  $(V_{out})$  is produced.

The circuit diagrams are as follows:



A general rule that can be applied for any voltage divider circuit is as follows:

$$V_{out} = V_{in} \times \frac{R_n}{R_T}$$

Where  $V_{out}$  = Output voltage (V)  $V_{in}$  = Input voltage (V)  $R_n$  = the resistor across which the output voltage is measured ( $\Omega$ )  $R_T$  = the total resistance of the voltage divider ( $\Omega$ )

**Example.1** Calculate the output voltage (*V*<sub>out</sub>) for the following voltage divider circuit:



| $V_{out} = ?$                                        | $V_{out} = V_{in} \times \frac{R_n}{R_T}$ |
|------------------------------------------------------|-------------------------------------------|
| $V_{in} = 12 V$ $R_n = 500 \Omega$                   | $= 12 \times \frac{500}{750}$             |
| $R_T = 250 \ \Omega + 500 \ \Omega$ $= 750 \ \Omega$ | = 8 V                                     |

VCE Physics Unit 1, Area of Study 2, Handout 2



#### Exam Styled Questions

## The following information applies to Questions 1–3.

Jono sets up the circuit shown in the figure below. He knows that the total resistance for the whole circuit is  $50 \Omega$ .



### Question 1

What is the value of  $R_1$ ?

| $R_1 = ?$                             | $\mathbf{R}_{\mathrm{T}} = \mathbf{R}_{1} + \mathbf{R}_{2}$ |
|---------------------------------------|-------------------------------------------------------------|
| $R_2 = 20 \ \Omega$                   | $50 = R_1 + 20$                                             |
| $R_T = 50 \Omega$ ( a series circuit) | $\therefore \underline{\mathbf{R}}_1 = 30 \ \Omega$         |

## Question 2

What is the reading of the voltmeter?

Option.1 Using a voltage divider circuit

| V <sub>out</sub> = ?          | $R_n$                                     |
|-------------------------------|-------------------------------------------|
| V <sub>in</sub> = 10 V        | $V_{out} = V_{in} \times \frac{R_n}{R_T}$ |
| R <sub>n</sub> = 30 Ω         | 30                                        |
| $R_T = 20 \Omega + 30 \Omega$ | $=10	imesrac{30}{50}$                    |
| = 50 Ω                        | = 6 V                                     |

# Option.2 Using Ohms Law

| Step.1 Calculate circuit currer |                        | Step.2 Find V     |                   |
|---------------------------------|------------------------|-------------------|-------------------|
| V <sub>T</sub> = 10 V           | $I_T = \frac{VS}{R_T}$ | V = ?             | $V = IR_1$        |
| $R_T = 50 \Omega$               | 10                     | I = 0.2 A         | $= 0.2 \times 30$ |
| $I_T = ?$                       | $I_{T} = \frac{1}{50}$ | $R_1 = 30 \Omega$ | = <u>6 Volts</u>  |
|                                 | = 0.2 A                |                   |                   |

VCE Physics Unit 1, Area of Study 2, Handout 2



### **Question 3**

Choose the correct answer.

Which of the following is the relationship between the readings of the three ammeters?

A. A1 > A2 > A3
B. A1 < A2 < A3</li>
C. A1 + A2 = A3
D. A1 = A2 = A3





#### The following information applies to Questions 4–6.

Jono then plays with his circuit a little, and comes up with the circuit shown below.



#### **Question 4**

What is the total resistance of the circuit?

| R <sub>T</sub> = ?     | $R_T = \left({R_1}^{-1} + {R_2}^{-1}\right)^{-1}$ |
|------------------------|---------------------------------------------------|
| R <sub>1</sub> = 300 Ω | $= (300^{-1} + 100^{-1})^{-1}$                    |
| $R_2 = 100 \Omega$     | $= 75 \Omega$                                     |

### Question 5

What is the reading on A1? Write your answer in milliamps.

Examine the second branch of the parallel circuit.

|                        | = <u>100 mA</u>         |
|------------------------|-------------------------|
|                        | = 0.1 A                 |
| l <sub>2</sub> = ?     | $=\frac{100}{100}$      |
|                        | _ 10                    |
| R <sub>2</sub> = 100 Ω |                         |
| V <sub>2</sub> = 10 V  | $I_2 = \frac{r_2}{R_2}$ |
|                        | V <sub>2</sub>          |

### **Question 6**

Choose the correct answer.

Which of the following is the relationship of the readings of the three ammeters?

A. A1 > A2 > A3
B. A1 < A2 < A3</li>
C. A1 + A2 = A3
D. A1 = A2 = A3





#### The following information applies to Questions 7 and 8.

Frankie is given three resistors: one 10  $\Omega$ , one 20  $\Omega$ , and one 30  $\Omega$ .

#### **Question 7**

What is the smallest resistance that Frankie can make with his three resistors? Explain your answer.

Smallest resistor =  $5.45 \Omega$ Explanation: Place the three resistors in parallel to one another

| R <sub>T</sub> = ?    | $R_T = \left( R_1^{-1} + R_2^{-1} + R_3^{-1} \right)^{-1}$ |
|-----------------------|------------------------------------------------------------|
| $R_1 = 10 \ \Omega$   | $= (10^{-1} + 20^{-1} + 30^{-1})^{-1}$                     |
| R <sub>2</sub> = 20 Ω | = (10 + 20 + 30)<br>= 5.45 $\Omega$                        |
| R <sub>3</sub> = 30 Ω | - 5. 15 12                                                 |

## Question 8

What is the largest resistance that Frankie can make with his three resistors? Explain your answer.

Largest resistor =  $60 \Omega$ Explanation: Place the three resistors in series to one another

| R <sub>T</sub> = ?    | $\mathbf{R}_{\mathrm{T}} = \mathbf{R}_1 + \mathbf{R}_2 + \mathbf{R}_3$ |
|-----------------------|------------------------------------------------------------------------|
| R <sub>1</sub> = 10 Ω | = 10 + 20 + 30                                                         |
| R <sub>2</sub> = 20 Ω | = <u>60 Ω</u>                                                          |
| R <sub>3</sub> = 30 Ω |                                                                        |

