Section 1.2.2 - Circuit Analysis

Circuits can be classified as either series or parallel;

Series Circuit

In a series circuit, coulombs of charge have only one possible path along which to travel. The circuit consists of one continuous loop.

Within a series circuit:

- The current remains constant:

$$
I_{T}=I_{1}=I_{2}=I_{3}
$$

- The sum ($\boldsymbol{\Sigma}$) of the voltage drops of each component = Total (supply) voltage

$$
V_{T}=V_{1}+V_{2}+V_{3}
$$

- The Total (effective) resistance = the sum (Σ) of the individual resistances

$$
R_{T}=R_{1}+R_{2}+R_{3}
$$

- The Total power = the sum (Σ) of the power given off by the individual resistances

$$
P_{T}=P_{1}+P_{2}+P_{3}
$$

Task. 1 A circuit consists of three resistors connected in series ($100 \Omega, 240 \Omega \& 140 \Omega$) to a 240 Volt DC supply

1. Draw a circuit diagram
2. Calculate the total resistance $\left(R_{T}\right)$
3. Calculate the current running through each resistor
4. Calculate the voltage drop across each resistor
5. Calculate the power given off (dissipated) by each resistor
6. Circuit diagram

7. $\quad R_{T}=$?

$$
\begin{aligned}
R_{T} & =R_{1}+R_{2}+R_{3} \\
& =100+240+140 \\
& =\mathbf{4 8 0} \boldsymbol{\Omega}
\end{aligned}
$$

$R_{1}=100 \Omega$
$R_{2}=240 \Omega$
$R_{3}=140 \Omega$
3. Consider the entire circuit (as I is constant anywhere in the circuit)

$$
\begin{array}{ll}
V_{T}=240 \mathrm{~V} & V_{T}=I R_{T} \\
R_{T}=480 \Omega & \therefore I=\frac{V_{T}}{R_{T}} \\
I=? & =\frac{240}{480}=\mathbf{0 . 5 ~ A}
\end{array}
$$

4. The voltage drop across each resistor

$\boldsymbol{V}(\mathbf{1 0 0} \boldsymbol{\Omega})$	$\boldsymbol{V}(\mathbf{2 4 0} \boldsymbol{\Omega})$	$\boldsymbol{V}(\mathbf{1 4 0} \boldsymbol{\Omega})$			
$V=?$	$V=I R$	$V=?$	$V=I R$	$V=?$	$V=I R$
$R=100 \Omega$	$=0.5 \times 100$	$R=240 \Omega$	$=0.5 \times 240$	$R=140 \Omega$	$=0.5 \times 140$
$I=0.5 A$	$=50 V$	$I=0.5 \mathrm{~A}$	$=120 \mathrm{~V}$	$I=0.5 \mathrm{~A}$	$=70 \mathrm{~V}$

NB: Σ voltage drops $=50 \mathrm{~V}+120 \mathrm{~V}+70 \mathrm{~V}=240 \mathrm{~V}=V_{T}$
5. The power given off each resistor

$\boldsymbol{P}(\mathbf{1 0 0} \boldsymbol{\Omega})$	$\boldsymbol{P}(\mathbf{2 4 0} \boldsymbol{\Omega})$	$\boldsymbol{P}(\mathbf{1 4 0} \boldsymbol{\Omega})$			
$P=?$	$P=V I$	$P=?$	$P=V I$	$P=?$	$P=V I$
$V=50 \mathrm{~V}$	$=50 \times 0.5$	$V=120 \mathrm{~V}$	$=120 \times 0.5$	$V=70 \mathrm{~V}$	$=70 \times 0.5$
$I=0.5 \mathrm{~A}$	$=25 \mathrm{~W}$	$I=0.5 \mathrm{~A}$	$=60 \mathrm{~W}$	$I=0.5 \mathrm{~A}$	$=35 \mathrm{~W}$

NB: Σ power dissipated $=25 \mathrm{~W}+60 \mathrm{~W}+35 \mathrm{~W}=120 \mathrm{~W}=P_{T}$

Parallel Circuit

In a parallel circuit, coulombs of charge have multiple pathways along which to travel. The circuit consists of one or more branches.

Within a parallel circuit:

- The sum ($\boldsymbol{\Sigma}$) of the current in each branch = Total (supply) current

$$
I_{T}=I_{1}+I_{2}+I_{3}
$$

- The voltage drop across each branch = Total (supply) voltage

$$
V_{T}=V_{1}=V_{2}=V_{3}
$$

- The Total (effective) resistance

$$
R_{T}=\left(R_{1}^{-1}+R_{2}^{-1}+R_{3}^{-1}\right)^{-1}
$$

- The Total power = the sum (Σ) of the power given off by the individual resistances

$$
P_{T}=P_{1}+P_{2}+P_{3}
$$

Task. 2 A circuit consists of three resistors connected in parallel ($120 \Omega, 60 \Omega \& 40 \Omega$) to a 240 Volt DC supply

1. Draw a circuit diagram
2. Calculate the total resistance (R_{T})
3. Calculate the voltage drop across each resistor
4. Calculate the current running through each resistor
5. Calculate the power given off (dissipated) by each resistor
6. Circuit diagram

7. $\quad R_{T}=$?

$$
\begin{aligned}
R_{T} & =\left(R_{1}{ }^{-1}+{R_{2}}^{-1}+{R_{3}}^{-1}\right)^{-1} \\
& =\left(120^{-1}+60^{-1}+40^{-1}\right)^{-1} \\
& =\mathbf{2 0} \boldsymbol{\Omega}
\end{aligned}
$$

$R_{1}=120 \Omega$
$R_{2}=60 \Omega$
$R_{3}=40 \Omega$
3. By definition, the voltage in each branch will be equal to that of the total (supply) voltage.
$V_{T}=240 \mathrm{~V}$
$\therefore V(120 \Omega)=V(60 \Omega)=V(40 \Omega)=V_{T}=240 \mathrm{~V}$
4. The current running through each resistor

$I(120 \Omega)$		$\boldsymbol{I}(60 \Omega)$		$\boldsymbol{I}(40 \Omega)$	
$\begin{array}{\|l} \hline I=? \\ R=120 \Omega \\ V=240 V \end{array}$	$\begin{aligned} & V=I R \\ & \begin{aligned} \therefore I & =\frac{V}{R} \\ & =\frac{240}{120} \\ & =2.0 \mathrm{~A} \end{aligned} \end{aligned}$	$\begin{aligned} & I=? \\ & R=60 \Omega \\ & V=240 V \end{aligned}$	$\begin{aligned} V & =I R \\ \therefore I & =\frac{V}{R} \\ & =\frac{240}{60} \\ & =4.0 \mathrm{~A} \end{aligned}$	$\begin{aligned} & I=? \\ & R=40 \Omega \\ & V=240 V \end{aligned}$	$\begin{aligned} V= & I R \\ \therefore I & =\frac{V}{R} \\ & =\frac{240}{40} \\ & =6.0 \mathrm{~A} \end{aligned}$

NB: Σ branch currents $=2.0 \mathrm{~A}+4.0 \mathrm{~A}+6.0 \mathrm{~A}=12.0 \mathrm{~A}=I_{T}$
5. The power given off each resistor

$\boldsymbol{P}(\mathbf{1 2 0} \boldsymbol{\Omega})$	$\boldsymbol{P (6 0 \Omega} \mathbf{\Omega})$		$\boldsymbol{P (4 0 \boldsymbol { \Omega })}$		
$P=?$	$P=V I$	$P=?$	$P=V I$	$P=?$	$P=V I$
$V=240 \mathrm{~V}$	$=240 \times 2.0$	$V=240 \Omega$	$=240 \times 4.0$	$V=240 \mathrm{~V}$	$=240 \times 6.0$
$I=2.0 \mathrm{~A}$	$=480 \mathrm{~W}$	$I=4.0 \mathrm{~A}$	$=960 \mathrm{~W}$	$I=6.0 \mathrm{~A}$	$=1440 \mathrm{~W}$

NB: Σ power dissipated $=480 \mathrm{~W}+960 \mathrm{~W}+1440 \mathrm{~W}=2880 \mathrm{~W}=P_{T}$

The Voltage Divider

A voltage divider is a relatively simple circuit comprising of two (or more) resistors ($\boldsymbol{R}_{1}, \boldsymbol{R}_{2} \ldots \boldsymbol{R}_{n}$) placed in series. An input voltage ($V_{i n}$) is applied and a reduced output voltage ($V_{\text {out }}$) is produced.

The circuit diagrams are as follows:

$V_{\text {out }}=V_{\text {in }} \times \frac{R_{2}}{R_{1}+R_{2}}$

$$
V_{\text {out }}=V_{\text {in }} \times \frac{R_{1}}{R_{1}+R_{2}}
$$

A general rule that can be applied for any voltage divider circuit is as follows:

$$
V_{o u t}=V_{i n} \times \frac{R_{n}}{R_{T}}
$$

Where $V_{\text {out }}=$ Output voltage (V)
$V_{\text {in }}=$ Input voltage (V)
$R_{n}=$ the resistor across which the output voltage is measured (Ω)
$R_{T}=$ the total resistance of the voltage divider (Ω)

Example. 1 Calculate the output voltage $\left(\boldsymbol{V}_{\text {out }}\right)$ for the following voltage divider circuit:

$$
\begin{aligned}
& V_{\text {out }}=? \\
& V_{\text {in }}=12 \mathrm{~V} \\
& R_{n}=500 \Omega \\
& R_{T}=250 \Omega+500 \Omega \\
& \quad=750 \Omega
\end{aligned}
$$

$$
\begin{aligned}
V_{\text {out }} & =V_{\text {in }} \times \frac{R_{n}}{R_{T}} \\
& =12 \times \frac{500}{750} \\
& =\mathbf{8} \mathbf{V}
\end{aligned}
$$

Exam Styled Questions

The following information applies to Questions 1-3.

Jono sets up the circuit shown in the figure below. He knows that the total resistance for the whole circuit is 50Ω.

Question 1

What is the value of R_{1} ?
$\mathrm{R}_{1}=$?
$\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{1}+\mathrm{R}_{2}$
$\mathrm{R}_{2}=20 \Omega$ $50=\mathrm{R}_{1}+20$
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ (a series circuit)
$\therefore \underline{\mathbf{R}_{\mathbf{1}}=\mathbf{3 0} \mathbf{\Omega}}$

Question 2

What is the reading of the voltmeter?

Option. 1 Using a voltage divider circuit

$V_{\text {out }}=$?
$V_{\text {in }}=10 \mathrm{~V}$

$$
\mathrm{R}_{\mathrm{n}}=30 \Omega
$$

$$
\begin{aligned}
V_{\text {out }} & =V_{\text {in }} \times \frac{R_{n}}{R_{T}} \\
& =10 \times \frac{30}{50}
\end{aligned}
$$

$R_{T}=20 \Omega+30 \Omega$

$$
=50 \Omega \quad=6 \mathrm{~V}
$$

Option. 2 Using Ohms Law

Step. 1 Calculate circuit current		Step.2 Find V	
$\mathrm{V}_{\mathrm{T}}=10 \mathrm{~V}$	$\mathrm{I}_{\mathrm{T}}=\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{R}_{\mathrm{T}}}$	$\mathrm{V}=?$	
$\mathrm{R}_{\mathrm{T}}=50 \Omega$		$\mathrm{I}=0.2 \mathrm{~A}$	$=\mathrm{IR}_{1}$
$\mathrm{I}_{\mathrm{T}}=?$	$\mathrm{I}_{\mathrm{T}}=\frac{10}{50}$	$\mathrm{R}_{1}=30 \Omega$	$=0.2 \times 30$
		$=0.2 \mathrm{~A}$	

Question 3

Choose the correct answer.

Which of the following is the relationship between the readings of the three ammeters?
A. $\mathrm{A} 1>\mathrm{A} 2>\mathrm{A} 3$
B. $A 1<A 2<A 3$
C. $A 1+A 2=A 3$
D. $\mathrm{A} 1=\mathrm{A} 2=\mathrm{A} 3$

D

The following information applies to Questions 4-6.

Jono then plays with his circuit a little, and comes up with the circuit shown below.

Question 4

What is the total resistance of the circuit?
$\mathrm{R}_{\mathrm{T}}=$?

$$
\begin{aligned}
R_{T} & =\left(R_{1}^{-1}+R_{2}^{-1}\right)^{-1} \\
& =\left(300^{-1}+100^{-1}\right)^{-1} \\
& =75 \Omega
\end{aligned}
$$

$\mathrm{R}_{1}=300 \Omega$
$R_{2}=100 \Omega$

Question 5

What is the reading on A 1 ? Write your answer in milliamps.

Examine the second branch of the parallel circuit.

$$
\begin{array}{ll}
\mathrm{V}_{2}=10 \mathrm{~V} & \mathrm{I}_{2}
\end{array}=\frac{\mathrm{V}_{2}}{\mathrm{R}_{2}}
$$

Question 6

Choose the correct answer.

Which of the following is the relationship of the readings of the three ammeters?
A. $\mathrm{A} 1>\mathrm{A} 2>\mathrm{A} 3$
B. $A 1<A 2<A 3$
C. $\mathrm{A} 1+\mathrm{A} 2=\mathrm{A} 3$
D. $\mathrm{A} 1=\mathrm{A} 2=\mathrm{A} 3$

C

The following information applies to Questions 7 and 8.

Frankie is given three resistors: one 10Ω, one 20Ω, and one 30Ω.

Question 7

What is the smallest resistance that Frankie can make with his three resistors? Explain your answer.
Smallest resistor $=5.45 \Omega$
Explanation: Place the three resistors in parallel to one another
$\mathrm{R}_{\mathrm{T}}=$?
$\mathrm{R}_{1}=10 \Omega$

$$
\mathrm{R}_{2}=20 \Omega
$$

$$
\mathrm{R}_{3}=30 \Omega
$$

$$
\begin{aligned}
R_{T} & =\left(R_{1}^{-1}+R_{2}^{-1}+R_{3}^{-1}\right)^{-1} \\
& =\left(10^{-\mathbf{1}}+20^{-\mathbf{1}}+30^{-\mathbf{1}}\right)^{-\mathbf{1}} \\
& =\mathbf{5 . 4 5} \boldsymbol{\Omega}
\end{aligned}
$$

Question 8

What is the largest resistance that Frankie can make with his three resistors? Explain your answer.
Largest resistor $=60 \Omega$
Explanation: Place the three resistors in series to one another
$\mathrm{R}_{\mathrm{T}}=$?
$\mathrm{R}_{1}=10 \Omega$
$\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$
$=10+20+30$
$\mathrm{R}_{2}=20 \Omega$
$=\underline{60 \Omega}$
$R_{3}=30 \Omega$

