VCAA "Dot Points"

Investigating and modelling linear associations, including:

- interpretation of the slope and intercepts of the least squares line in the context of the situation being modelled, including:
 - use of the rule of the fitted line to make predictions being aware of the limitations of extrapolation
 - use of the coefficient of determination, r2, to assess the strength of the association in terms of explained variation
 - use of residual analysis to check quality of fit
- data transformation and its use in transforming some forms of non-linear data to linearity using a square, log or reciprocal transformation (on one axis only)
- interpretation and use of the equation of the least squares line fitted to the transformed data to make predictions.

Checking for Linearity

To determine whether a **linear relationship** exists between two variables, **three "checks"** can be applied.

Check 1 – The correlation coefficient (*r*)

A high correlation coefficient indicates a strong linear association/relationship between the two variables.

Check 2 – The coefficient of determination (r^2)

A high correlation coefficient indicates that the response variable can be predicted, to a high degree, by the explanatory variable.

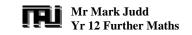
NB: Several data sets may appear to be linear based upon a high Pearson product-moment correlation coefficient (r). However, when examined more closely, the relationship may actually be better explained by a non-linear model such as a reciprocal, logarithmic or squared relationship.

Check 3 – Residual plot

The third and final "check" to determine whether a linear relationship exists between two variables is to analyse the residual plot created by the data.

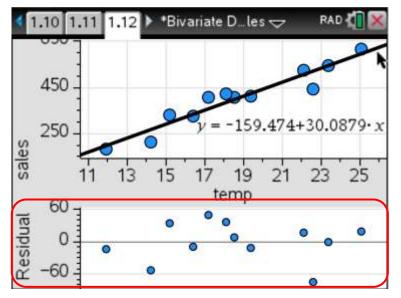
If a linear relationship exists, then the residual plot will display:

- > An appropriately equal number of points above and below the axis
- > A random scattering of points above and below the x-axis
- > No clear pattern



Example 1

Consider the ice cream sales v daily temperature example from Notes 3.1.12. The linear regression and residual plot for this data is as follows:



•	C	D	E	F	1
=			=LinRegB		
2		RegEqn	a+b*x		
3		а	-159.474		
4		b	30.0879		
5		٢	0.916819		
6		r	0.957507		

Linearity Check List

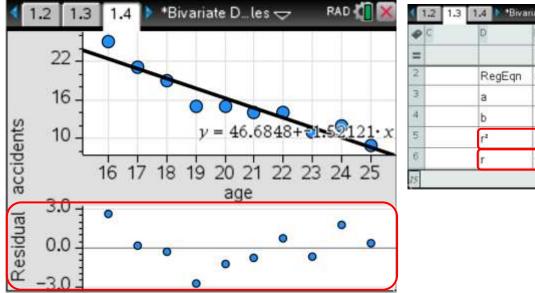
Outcome

☑ High *r* (0.958) \square High r^2 (0.917) ☑ Evenly scattered residual plot

The original data probably have a linear relationship. *Ice cream sales* (\$) = $-159.47 + 30.09 \times Temperature$ (°C)

Example 2

Consider the ice driver age v no. of accidents example from Notes 3.1.12. The linear regression and residual plot for this data is as follows:



€ C	D	E	E.	-
=		=LinRegB	0	
2	RegEqn	a+b*x		
3	а	46.6848		
-4	b	-1.52121		
5	٢٦	0.89841		
6	r.	-0.9478		10
15				4 >

Linearity Check List

Outcome

☑ High *r* (-0.948) \square High r^2 (0.898) The original data probably have a linear relationship. No. of accidents(per 100) = $46.68 - 1.52 \times Age(years)$

☑ Evenly scattered residual plot

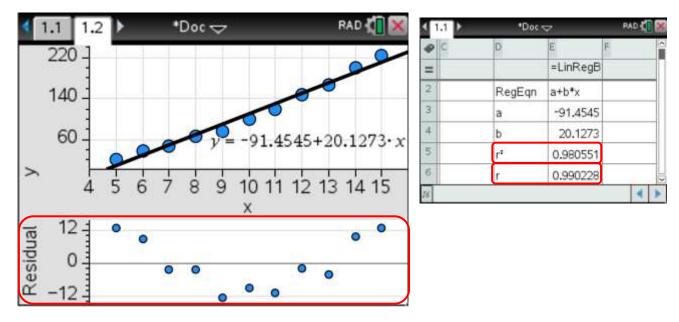


Example 3

Consider the following data for example:

x	5	6	7	8	9	10	11	12	13	14	15
y	22	38	47	67	77	101	119	148	166	200	223

The linear regression and residual plot for this data is as follows:



Linearity Check List \square High r (0.990)

<u>Outcome</u>

The original data <u>probably</u> have a non-linear relationship. **Transformation** of the data may be required

There appears to be a curved pattern

NB: a very strong correlation coefficient <u>does not</u> guarantee a linear relationship.

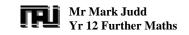
Transformation Options

There are six different transformations available.

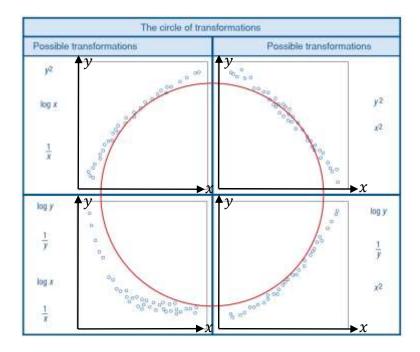
x transformations	Reciprocal of $x: \frac{1}{x}$	Logarithm of x : $log_{10}(x)$	x squared: x^2
y transformations	Reciprocal of $y: \frac{1}{y}$	Logarithm of $y: log_{10}(y)$	y squared: y^2

The questions is which transformation should we use?

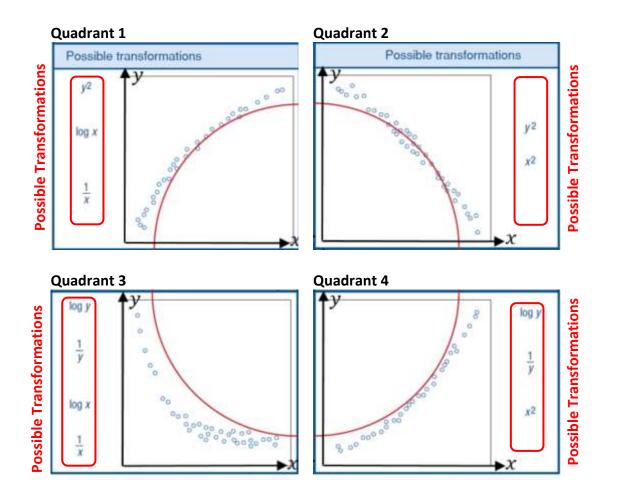
We can examine the shape of the original data and see which quadrant it fits in upon **the circle of transformation** diagram.

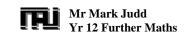


The Circle of Transformation



The **circle of transformation** is a visual tool used to select the most **appropriate transformation** for a given set of non-linear data.

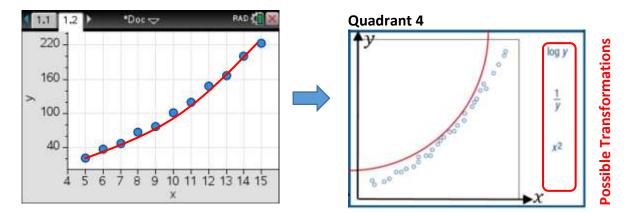




Example 3 (cont)

The original data <u>probably</u> have a non-linear relationship. **Transformation** of the data may be required.

Qn: Which transformation to test?

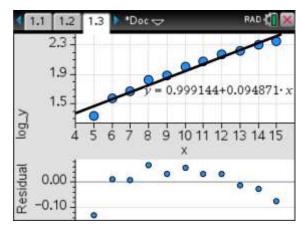


The shape of the original data best matches that of Quadrant 4. The following transformations should be investigated:

- ▶ Logarithm of $y: log_{10}(y)$
- Reciprocal of y: $\frac{1}{y}$
- > x squared: x^2

Let's now exam each of the three recommended transformations to determine what relationship actually exists between the two variables.

-	Ву	C log_y	D	E	
=		=log('y,10)		=LinRegB	
-	38.	1.57978	RegEqn	a+b*x	
3	47.	1.6721	а	0.999144	
4	67.	1.82607	b	0.094871	
5	77.	1.88649	r²	0.966072	
6	101.	2.00432	r	0.982889	



NB: the y-axis now represents $log_{10}(y)$

Summary:

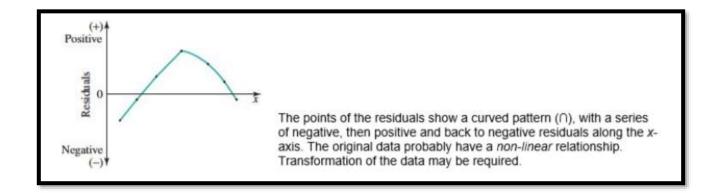
Least squares regression line: $log_{10}(y) = 0.9991 + 0.0949x$ r = 0.983 $r^2 = 0.966$

Residual plot:

The points of the residuals show a curved pattern (^) with a series of negative, then positive and back to negative residuals along the x-axis. The original data probably have a non-linear relationship. An <u>alternative</u> transformation of the data may be required.

Outcome:

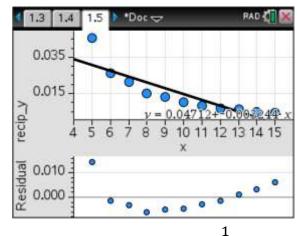
The $log_{10}(y)$ transformation has not improved the original r or r^2 values, nor does the residual plot indicate any improved linearity. Proceed to the next recommended transformation.



Transformation 1: Logarithm of $y: log_{10}(y)$

Transformation 2: Reciprocal of $y: \frac{1}{y}$

e B	y	⊂ recip_y	D	E			
=	=1/5	=1/y	=1/y =Lin			=LinRegB	
2	38.	0.026316	RegEqn	a+b*x			
3	47.	0.021277	а	0.04712			
4	67.	0.014925	b	-0.0032			
5	77.	0.012987	r²	0.758129			
6	101.	0.009901	r	-0.8707			



NB: the y-axis now represents

Summary:

Least squares regression line: $\frac{1}{y} = 0.0471 + 0.0032x$

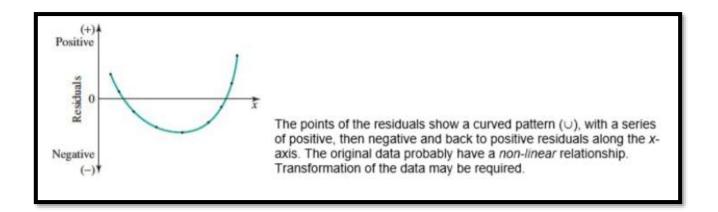
r = -0.8707 $r^2 = 0.7581$

Residual plot:

The points of the residuals show a curved pattern ($_{\circ}$) with a series of positive, then negative and back to positive residuals along the x-axis. The original data probably have a non-linear relationship. An <u>alternative</u> transformation of the data may be required.

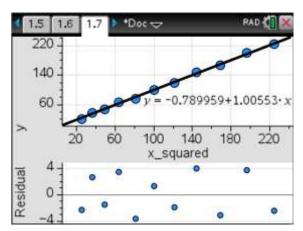
Outcome:

The $\frac{1}{y}$ transformation has not improved the original r or r^2 values, nor does the residual plot indicate any improved linearity. Proceed to the next recommended transformation.



Transformation 3: x squared: x^2

-	Ву	C x_squ	D	E	
=		='x^2		=LinReg	
2	38,	36.	RegEqn	a+b*x	
3	47.	49.	а	-0.7899	
4	67.	64.	b	1.00553	
5	77.	81.	r².	0.998014	
6	101.	100.	r	0.999006	



NB: the x-axis now represents x^2

Summary:

Least squares regression line: $y = -0.789959 + 1.00533x^2$

r = 0.999

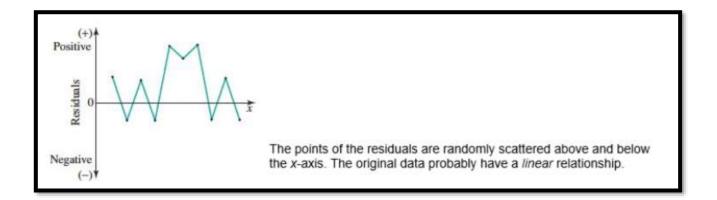
 $r^2 = 0.998$

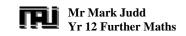
Residual plot:

The points of the residuals are randomly scattered above and below the x-axis. The original data probably have a linear relationship

Outcome:

The x^2 transformation has improved the original r and r^2 values and the residual plot also indicate an improved linearity. <u>This is the correct transformation</u> for this particular set of data. Therefore $y = -0.789959 + 1.00533x^2$ is the best relationship available to these two variables.





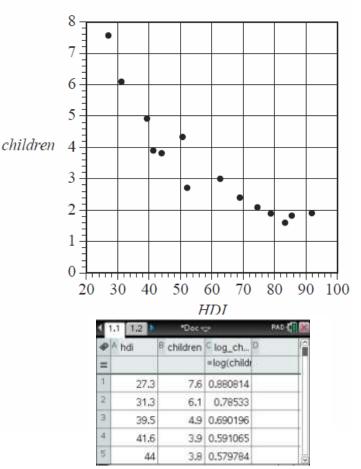
Exam Styled Questions- Multiple Choice

Question 1

(2016 Exam 1 Section A – Qn 11)

The table below gives the Human Development Index (*HDI*) and the mean number of children per woman (*children*) for 14 countries in 2007. A scatterplot of the data is also shown.

HDI	Children
27.3	7.6
31.3	6.1
39.5	4.9
41.6	3.9
44.0	3.8
50.8	4.3
52.3	2.7
62.5	3.0
69.1	2.4
74.6	2.1
78.9	1.9
85.6	1.8
92.0	1.9
83.4	1.6

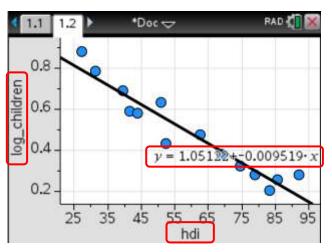


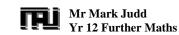
The scatterplot is non-linear.

A log transformation applied to the variable *children* can be used to linearise the scatterplot. With *HDI* as the explanatory variable, the equation of the least squares line fitted to the linearised data is closest to

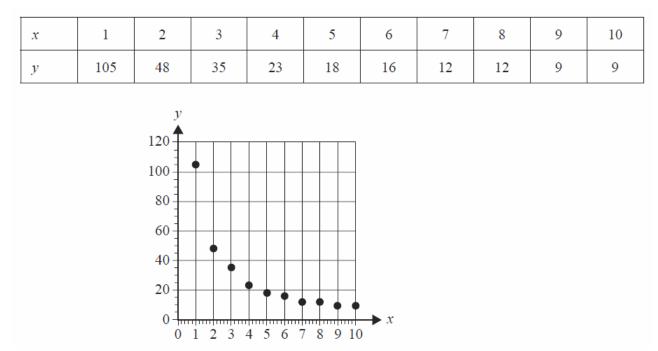
A. $log(children) = 1.1 - 0.0095 \times HDI$ **B.** $children = 1.1 - 0.0095 \times log(HDI)$ **C.** $log(children) = 8.0 - 0.77 \times HDI$ **D.** $children = 8.0 - 0.77 \times log(HDI)$ **E.** $log(children) = 21 - 10 \times HDI$

Therefore Option A





Question 2 (2018 Exam 1 Section A – Qn 11)



Freya uses the following data to generate the scatterplot below.

The scatterplot shows that the data is non-linear.

To linearise the data, Freya applies a reciprocal transformation to the variable y.

She then fits a least squares line to the transformed data.

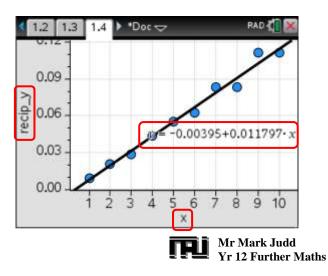
With x as the explanatory variable, the equation of this least squares line is closest to

A.
$$\frac{1}{y} = -0.0039 + 0.012x$$

B. $\frac{1}{y} = -0.025 + 1.1x$
C. $\frac{1}{y} = 7.8 - 0.082x$
D. $y = 45.3 + 59.7 \times \frac{1}{x}$
E. $y = 59.7 + 45.3 \times \frac{1}{x}$

Therefore Option A

1	RAD 🚺 🔀			
P	A x	Ву	^C recip_y	D
=			=1/'y	
1	1	105	1/105	
2	2	48	1/48	
3	3	35	1/35	
4	4	23	1/23	
5	5	18	1/18	



Question 3 (2018 Exam 1 Section A – Qn 12)

A $log_{10}(y)$ transformation was used to linearise a set of non-linear bivariate data. A least squares line was then fitted to the transformed data. The equation of this least squares line is

$$log_{10}(y) = 3.1 - 2.3x$$

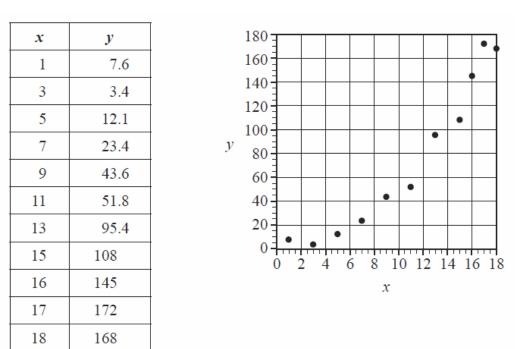
This equation is used to predict the value of y when x = 1.1The value of y is closest to

A. -0.24 B. 0.57	Substitute (place) $x = 1.1$ into the equation of	of least squares
C. 0.91 D. 1.6 E. 3.7	$log_{10}(y) = 3.1 - 2.3x$ $log_{10}(y) = 3.1 - 2.3 \times 1.1$ $log_{10}(y) = 0.57$	
E	solve $\left(\log_{10}(y)=0.57, y\right)$	<i>y</i> =3.71535

Therefore Option E

Question 4 (2019 Exam 1 Section A – Qn 12)

The table below shows the values of two variables x and y. The associated scatterplot is also shown. The explanatory variable is x.

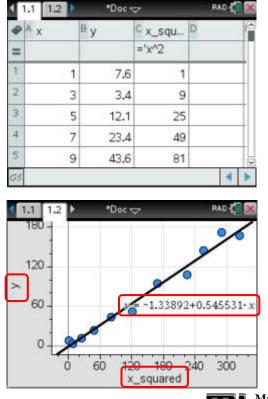


The scatterplot is non-linear.

A squared transformation applied to the variable x can be used to linearise the scatterplot. The equation of the least squares line fitted to the linearised data is closest to

A. $y = -1.34 + 0.546x$
B. $y = -1.34 + 0.546x^2$
C. $y = 3.93 - 0.00864x^2$
D. $y = 34.6 - 10.5x$
E. $y = 34.6 - 10.5x^2$

Therefore Option B

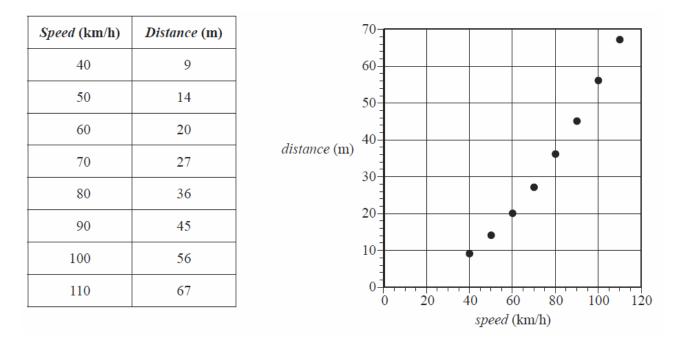


Mr Mark Judd Yr 12 Further Maths

VCE Further Maths Unit 3, Core: Data Analysis

Question 4

(2017 NHT Exam 1 Section A – Qn 12)



The table below shows the *speed*, in kilometres per hour, and the braking *distance*, in metres, of a car travelling at eight different speeds. A scatterplot has been constructed from this data.

The scatterplot shows that the association between *distance* and *speed* is non-linear. A squared transformation is applied to the variable *speed* to linearise the data.

A least squares line is then fitted to the transformed data with *distance* as the response variable. The equation of this least squares line is closest to

A. distance = $-15.6 + 180 \times speed^2$ B. distance = $0.0056 + 0.092 \times speed^2$ C. distance = $0.092 + 0.0056 \times speed^2$ D. speed² = $180 - 15.6 \times distance$ E. speed² = $0.0056 + 0.092 \times distance^2$

Therefore Option C

		4 Doce ^B distance		Ð	a constant of	F
=	speeu	uistance	= speed^2	-		1
1	40	9	1600			1
14	50	14	2500			
з	60	20	3600			
4	70	27	4900			
111	80	36	6400			1
G5					4	

