Section 3.1.16 Transformations to linearity

VCAA "Dot Points"

Investigating and modelling linear associations, including:

- interpretation of the slope and intercepts of the least squares line in the context of the situation being modelled, including:
- use of the rule of the fitted line to make predictions being aware of the limitations of extrapolation
- use of the coefficient of determination, $r 2$, to assess the strength of the association in terms of explained variation
- use of residual analysis to check quality of fit
- data transformation and its use in transforming some forms of non-linear data to linearity using a square, log or reciprocal transformation (on one axis only)
- interpretation and use of the equation of the least squares line fitted to the transformed data to make predictions.

Checking for Linearity

To determine whether a linear relationship exists between two variables, three "checks" can be applied.

Check 1 - The correlation coefficient (r)

A high correlation coefficient indicates a strong linear association/relationship between the two variables.

Check 2 - The coefficient of determination (r^{2})

A high correlation coefficient indicates that the response variable can be predicted, to a high degree, by the explanatory variable.

NB: Several data sets may appear to be linear based upon a high Pearson product-moment correlation coefficient (r). However, when examined more closely, the relationship may actually be better explained by a non-linear model such as a reciprocal, logarithmic or squared relationship.

Check 3 - Residual plot

The third and final "check" to determine whether a linear relationship exists between two variables is to analyse the residual plot created by the data.

If a linear relationship exists, then the residual plot will display:
$>$ An appropriately equal number of points above and below the axis
$>$ A random scattering of points above and below the x-axis
$>$ No clear pattern

Example 1
Consider the ice cream sales v daily temperature example from Notes 3.1.12. The linear regression and residual plot for this data is as follows:

$4^{1.1}$	1.1 1.2	1.3) *ivarate D. les ∇			
-	c	D	E	F	$\hat{}$
=			$=$ LinRegB		
2		RegEqn	a+b*x		
3		a	-159.474		
4		b	30.0879		
5		r^{2}	0.916819		
6		\uparrow	0.957507		
$4 / 1$	14.2			4	-

Linearity Check List

V High r (0.958)
\square High r^{2} (0.917)
∇ Evenly scattered residual plot

Outcome

The original data probably have a linear relationship.
Ice cream sales $(\$)=-159.47+30.09 \times$ Temperature $\left({ }^{\circ} \mathrm{C}\right)$

Example 2

Consider the ice driver age vno. of accidents example from Notes 3.1.12. The linear regression and residual plot for this data is as follows:

Linearity Check List

\checkmark High r (-0.948)
\square High r^{2} (0.898)
\square Evenly scattered residual plot

Outcome

The original data probably have a linear relationship.
No. of accidents $($ per 100 $)=46.68-1.52 \times$ Age $($ years $)$

Example 3

Consider the following data for example:

\boldsymbol{x}	5	6	7	8	9	10	11	12	13	14	15
\boldsymbol{y}	22	38	47	67	77	101	119	148	166	200	223

The linear regression and residual plot for this data is as follows:

Linearity Check List

High r (0.990)
High r^{2} (0.981)

Outcome

The original data probably have a non-linear relationship.
Transformation of the data may be required

区 Unevenly scattered residual plot
There appears to be a curved pattern

NB: a very strong correlation coefficient does not guarantee a linear relationship.

Transformation Options

There are six different transformations available.

x transformations	Reciprocal of $x: \frac{1}{x}$	Logarithm of $x: \log _{10}(x)$	x squared: x^{2}
y transformations	Reciprocal of $y: \frac{1}{y}$	Logarithm of $y: \log _{10}(y)$	y squared: y^{2}

The questions is which transformation should we use?
We can examine the shape of the original data and see which quadrant it fits in upon the circle of transformation diagram.

The Circle of Transformation

The circle of transformation is a visual tool used to select the most appropriate transformation for a given set of non-linear data.

Example 3 (cont)
The original data probably have a non-linear relationship. Transformation of the data may be required.

Qn: Which transformation to test?

The shape of the original data best matches that of Quadrant 4. The following transformations should be investigated:
$>$ Logarithm of $y: \log _{10}(y)$
$>$ Reciprocal of $y: \frac{1}{y}$
> x squared: x^{2}
Let's now exam each of the three recommended transformations to determine what relationship actually exists between the two variables.

Transformation 1: Logarithm of $\boldsymbol{y}: \boldsymbol{\operatorname { l o g }}_{10}(y)$

	1.2	1.3 PDoc -		Rad \times [] \times
φ		${ }^{C} \log _{2} y$	D	E
$=$		$=\log (y, 10$.		$=$ LinReg B
	38.	1.579/8	Regeqn	$\mathrm{a}^{+D^{*} \times}$
3	47.	1.6721	a	0.999144
4	67.	1.82607	b	0.094871
5	77.	1.88649	r^{2}	0.966072
6	101.	2.00432	r	0.982889
E1	="Linear R	egression (a	(a+bx)"	4

Summary:

Least squares regression line: $\log _{10}(y)=0.9991+0.0949 x$
$r=0.983$
$r^{2}=0.966$

Residual plot:

The points of the residuals show a curved pattern (n) with a series of negative, then positive and back to negative residuals along the x-axis. The original data probably have a non-linear relationship. An alternative transformation of the data may be required.

Outcome:

The $\log _{10}(y)$ transformation has not improved the original r or r^{2} values, nor does the residual plot indicate any improved linearity. Proceed to the next recommended transformation.

Transformation 2: Reciprocal of y : $\frac{1}{y}$

Summary:

NB: the y -axis now represents $\frac{1}{y}$

Least squares regression line: $\frac{1}{y}=0.0471+0.0032 x$
$r=-0.8707$
$r^{2}=0.7581$

Residual plot:

The points of the residuals show a curved pattern (u) with a series of positive, then negative and back to positive residuals along the x-axis. The original data probably have a non-linear relationship. An alternative transformation of the data may be required.

Outcome:

The $\frac{1}{y}$ transformation has not improved the original r or r^{2} values, nor does the residual plot indicate any improved linearity. Proceed to the next recommended transformation.

Transformation 3: x squared: x^{2}

NB: the x -axis now represents x^{2}

Summary:

Least squares regression line: $y=-0.789959+1.00533 x^{2}$
$r=0.999$
$r^{2}=0.998$

Residual plot:

The points of the residuals are randomly scattered above and below the x -axis. The original data probably have a linear relationship

Outcome:

The x^{2} transformation has improved the original r and r^{2} values and the residual plot also indicate an improved linearity. This is the correct transformation for this particular set of data. Therefore $y=-0.789959+1.00533 x^{2}$ is the best relationship available to these two variables.

Exam Styled Questions- Multiple Choice

Question 1

(2016 Exam 1 Section A - Qn 11)
The table below gives the Human Development Index (HDI) and the mean number of children per woman (children) for 14 countries in 2007.
A scatterplot of the data is also shown.

HDI	Children
27.3	7.6
31.3	6.1
39.5	4.9
41.6	3.9
44.0	3.8
50.8	4.3
52.3	2.7
62.5	3.0
69.1	2.4
74.6	2.1
78.9	1.9
85.6	1.8
92.0	1.9
83.4	1.6

The scatterplot is non-linear.

A log transformation applied to the variable children can be used to linearise the scatterplot.
With HDI as the explanatory variable, the equation of the least squares line fitted to the linearised data is closest to
A. $\log ($ children $)=1.1-0.0095 \times$ HDI
B. children $=1.1-0.0095 \times \log (H D I)$
C. $\log ($ children $)=8.0-0.77 \times H D I$
D. children $=8.0-0.77 \times \log (H D I)$
E. $\log ($ children $)=21-10 \times$ HDI

A

Question 2

(2018 Exam 1 Section A - Qn 11)

Freya uses the following data to generate the scatterplot below.

x	1	2	3	4	5	6	7	8	9	10
y	105	48	35	23	18	16	12	12	9	9

The scatterplot shows that the data is non-linear.
To linearise the data, Freya applies a reciprocal transformation to the variable y.
She then fits a least squares line to the transformed data.
With x as the explanatory variable, the equation of this least squares line is closest to
A. $\frac{1}{y}=-0.0039+0.012 x$
B. $\frac{1}{y}=-0.025+1.1 x$
C. $\frac{1}{y}=7.8-0.082 x$
D. $y=45.3+59.7 \times \frac{1}{x}$
E. $y=59.7+45.3 \times \frac{1}{x}$

A

Question 3

(2018 Exam 1 Section A - Qn 12)

A $\log _{10}(y)$ transformation was used to linearise a set of non-linear bivariate data. A least squares line was then fitted to the transformed data.
The equation of this least squares line is

$$
\log _{10}(y)=3.1-2.3 x
$$

This equation is used to predict the value of y when $x=1.1$
The value of y is closest to
A. -0.24
B. 0.57

Substitute (place) $x=1.1$ into the equation of least squares
C. 0.91
D. 1.6
E. 3.7
$\log _{10}(y)=3.1-2.3 x$
$\log _{10}(y)=3.1-2.3 \times 1.1$
$\log _{10}(y)=0.57$
E

Therefore Option E

Question 4

(2019 Exam 1 Section A - Qn 12)

The table below shows the values of two variables x and y.
The associated scatterplot is also shown.
The explanatory variable is x.

\boldsymbol{x}	\boldsymbol{y}
1	7.6
3	3.4
5	12.1
7	23.4
9	43.6
11	51.8
13	95.4
15	108
16	145
17	172
18	168

The scatterplot is non-linear.
A squared transformation applied to the variable x can be used to linearise the scatterplot. The equation of the least squares line fitted to the linearised data is closest to
A. $y=-1.34+0.546 x$
B. $y=-1.34+0.546 x^{2}$
C. $y=3.93-0.00864 x^{2}$
D. $y=34.6-10.5 x$
E. $y=34.6-10.5 x^{2}$

Therefore Option B

11.	1.2	*Doc \square^{\prime}			RAO χ^{\prime}	
\bullet A	A \times		y	${ }^{\text {c }}$ __squ...		R
$=$				$=^{\prime} x^{\wedge} 2$		
1		1	7.6	1		
2		3	3.4	9		
3		5	12.1	25		
4		7	23.4	49		
5		9	43.6	81		
G5					4	$\stackrel{\rightharpoonup}{ }$

Question 4

(2017 NHT Exam 1 Section A - Qn 12)

The table below shows the speed, in kilometres per hour, and the braking distance, in metres, of a car travelling at eight different speeds. A scatterplot has been constructed from this data.

Speed (km/h)	Distance (m)
40	9
50	14
60	20
70	27
80	36
90	45
100	56
110	67

The scatterplot shows that the association between distance and speed is non-linear. A squared transformation is applied to the variable speed to linearise the data. A least squares line is then fitted to the transformed data with distance as the response variable. The equation of this least squares line is closest to
A. distance $=-15.6+180 \times$ speed 2
B. distance $=0.0056+0.092 \times$ speed 2
C. distance $=0.092+0.0056 \times$ speed 2
D. speed $^{2}=180-15.6 \times$ distance
E. speed $^{2}=0.0056+0.092 \times$ distance 2

C

Therefore Option C

		1.4 P Doce			
		${ }^{8}$ distance ${ }^{\text {c }}$ speed... ${ }^{\text {D }}$			I
$=$			"speed 22		
1	40	9	1600		
2	50	14	2500		
3	60	20	3600		
4	70	27	4900		
5	80	36	6400		
5				4	p

