VCAA "Dot Points"

Investigating data distributions, including:

- scatterplots and their use in identifying and qualitatively describing the association between two numerical variables in terms of direction (positive/negative), form (linear/non-linear) and strength (strong/moderate/weak)
- construct scatterplots and use them to identify and describe associations between two numerical variables

Scatterplots

A **scatter plot** is a graph of plotted points that show the **relationship** between **two sets of data**. Scatterplots are used to determine relationships/associations between two **numerical variables**.

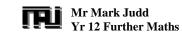
Example 1

Т

Consider the following data, which shows the daily sales of ice creams and the noon temperature for that day.

Тетр (° <i>С</i>)	Ice Cream Sales (\$)	Ice Cream Sales v Temperature						
14.2	215			cum sur	co v ieiii	Jerutu		
16.4	325	700						
11.9	185	600						
15.2	332	(\$) 500 400		-		-	•	
18.5	406	tes 400			•	••	-	- 23
22.1	522	E 300			••			
19.4	412	E 300 200						
25.1	614	100						
23.4	544	0						
18.1	421	0	5	10	15	20	25	30
22.6	445			Te	mperature (°C)		
17.2	408							

In this example, the ice cream sales **respond** to the temperature of the day, not the other way around. Alternatively, the daily temperature can be used to **explain** ice cream sales.


Accordingly;

- Ice Cream Sales (\$) is the response variable, &
- Temperature (°C) is the explanatory variable

<u>Recall</u>

When graphing this data upon a scatter plot;

- the response variable is plotted upon the vertical (y) axis, &
- the explanatory variable is plotted upon the horizontal (x) axis

Example 2

Consider the following data, which shows the accidents per 100 drivers and the age of the drivers in a given year.

Age (Years)	Accidents (per 100 drivers)	Accidents v Age							
16	25	<u>ب</u> 28							
17	21	Accidents (per 100d rvers) 8 Et 81 EZ	•						
18	19	Po		•					
19	15	07 1, 18		•)				
20	15	(be							
21	14	st 13				• •			
22	14	cide					•		
23	11	-							
24	12	1	15	17	19	21	23	25	27
25	9					Age (years)		

In this example, the number of accidents **respond** to the driver age. Alternatively, the driver's age can be used to **explain** number of car accidents.

Accordingly;

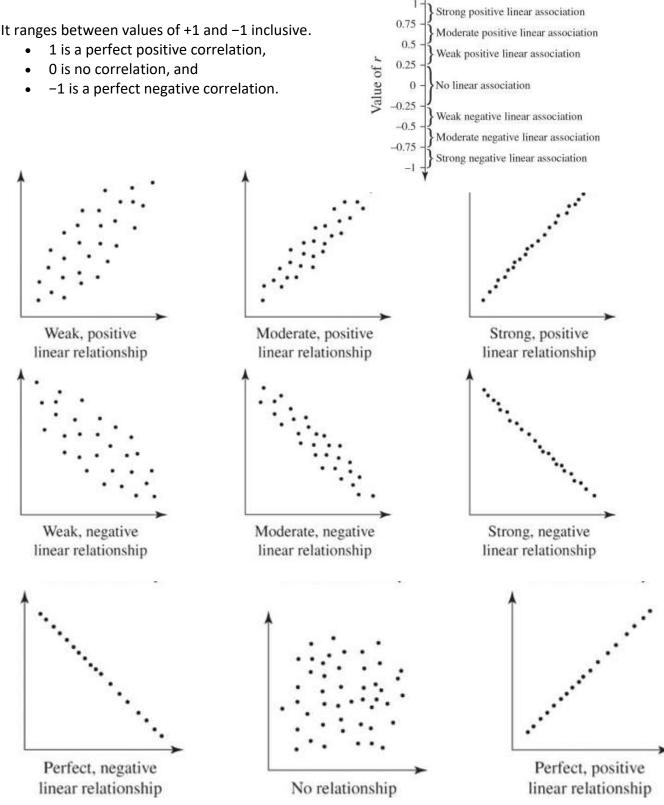
- Accidents (per 100 drivers) is the response variable, &
- Age (years) is the explanatory variable

<u>Recall</u>

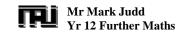
When graphing this data upon a scatter plot;

- the response variable is plotted upon the vertical (y) axis, &
- the explanatory variable is plotted upon the horizontal (x) axis

When describing the **relationship** between two variables displayed on a scatterplot, we need to comment on:


- the **direction** whether it is positive or negative
- the form whether it is linear or non-linear
- the **strength** whether it is strong, moderate or weak
- possible outliers

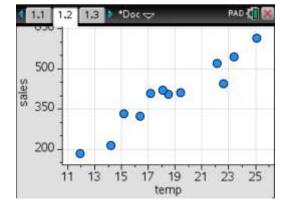
Pearson product-moment correlation coefficient (r)


The Pearson product-moment correlation coefficient (r) is a measure of the linear correlation

(dependence) between two variables X and Y.

NB: A **positive correlation** means that as the X variable increases, so too does the Y variable A **negative correlation** means that as the X variable increases, the Y variable decreases

VCE Further Maths Unit 3, Core: Data Analysis


Task 1

Use your TI-Nspire CAS calculator to:

- 1. Construct a "List & Spreadsheet"
- 2. Construct a "Data & Statistics"

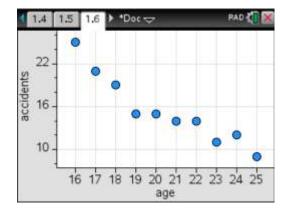
For the Example.1 data relating to temperature and ice cream sales.

	A temp	B sales	c.	D	1
*	temp	sales	-	-	
=					
1	14.2	215	1	l.	
2	16.4	325			
3	11.9	185			
4	15.2	332			
5	18.5	406			
35		-			4 1

Question:

Classify the association between the variables ice cream sales and daily temperature. By inspection (i.e. visual appearance) there appears to be a strong, positive, linear association.

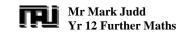
Task 2


Use your TI-Nspire CAS calculator to:

1. Construct a "List & Spreadsheet"

2. Construct a "Data & Statistics"

For the Example.2 data relating to driver age and driver accidents.


-	101	.5 Docs	c	D	10
*	A age	B accide	M.	E.	
=					
1	16	25			
2	17	21			
3	18	19			
4	19	15			
5	20	15			
F5					4 1

Question:

Classify the association between the driver age sales and driver accidents

By inspection (i.e. visual appearance) there appears to be a strong, negative, linear association.

