Mutually exclusive events

Mutually Exclusive Event

Mutually exclusive events cannot occur as the same time.
For example, it is impossible to toss a coin and get a "head" and "tails", it is one or the other.

Figure 1
The Venn diagram for mutually exclusive events is shown above in figure 1.

Example 1
A fair six-sided die is rolled. Consider the following events
$\xi=\{1,2,3,4,5,6\}$
$A=\{$ spinning an odd number $\}$
$B=\{$ spinning a 6$\}$

$\operatorname{Pr}(A)=\frac{n(A)}{n(\xi)}=\frac{3}{6}=\frac{1}{2}$
Addition rule for mutually exclusive events
$\operatorname{Pr}(B)=\frac{n(B)}{n(\xi)}=\frac{1}{6}$
$\operatorname{Pr}(A$ or $B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)$ $\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)$
$\operatorname{Pr}(A$ or $B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)=\frac{1}{2}+\frac{1}{6}$

$$
\operatorname{Pr}(A \cap B)=\mathbf{0}
$$

$$
=\frac{3}{6}+\frac{1}{6}=\frac{4}{6}=\frac{2}{3}
$$

$\operatorname{Pr}(A$ and $B)=0$
NB: When two events are mutually exclusive, it is impossible for both of them to occur at the same time.

Not Mutually Exclusive Event

Events that are not mutually exclusive can occur at the same time.
For example, it is possible to roll a fair six-sided die and get an "even number" and "the number six".

Figure 2
The Venn diagram for an event that is not mutually exclusive is shown above in figure 2.

Example 2

A deck of cards has 52 cards in total. Consider the following events
$\xi=\{52$ cards $\}$
$A=\{d r a w i n g ~ a ~ K i n g\} ~$
$B=\{$ drawing a Heart $\}$

$\operatorname{Pr}(A)=\frac{n(A)}{n(\xi)}=\frac{4}{52}=\frac{1}{13}$
$\operatorname{Pr}(B)=\frac{n(B)}{n(\xi)}=\frac{13}{52}=\frac{1}{4}$

General addition rule for events

$$
\begin{gathered}
\operatorname{Pr}(A \text { or } B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \text { and } B) \\
\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)
\end{gathered}
$$

$\operatorname{Pr}(A$ or $B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A$ and $B)$
$\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)$

$$
\begin{aligned}
& =\frac{1}{13}+\frac{1}{4}-\frac{1}{52} \\
& =\frac{4}{52}+\frac{13}{52}-\frac{1}{52}=\frac{4}{13}
\end{aligned}
$$

