Venn diagrams and sample space

Venn diagrams

A Venn diagram consists of a rectangle containing one or more circular areas.

The rectangle represents the universal set (ξ).
The universe set is not "everything in existence", but "everything that we're working with right now". The universal set represents every element for a particular situation being examined.

The circles represent particular outcomes or groups of the sample space
A represents Group A
B represents Group B

Example 1

In a class of 20 students, 10 study Art, 5 study Biology and 3 study both.
Construct a Venn diagram, where;
$\xi=\{$ students in the class $\}$
A $=\{$ student who study Art $\}$
$B=\{$ students who study Biology\}

8

If 1 student were selected from the class what would be the probability that the student is:
i. An Art student
ii. A Biology student
iii. An Art student but not a Biology student
iv. A Biology student but not an Art student
v. Neither an Art or Biology student
vi. Both an Art and Biology student
i. An Art student

$$
\begin{gathered}
n(A)=10 \\
\operatorname{Pr}(A)=\frac{n(A)}{n(\xi)}=\frac{10}{20}=\frac{1}{2}
\end{gathered}
$$

ii. A Biology student
$n(B)=5$
$\operatorname{Pr}(B)=\frac{n(B)}{n(\xi)}=\frac{5}{20}=\frac{1}{4}$

iii. An Art student but not a Biology student
$n(A$ and not $B)=7$
$n\left(A \cap B^{\prime}\right)=7$
$\operatorname{Pr}\left(A \cap B^{\prime}\right)=\frac{n\left(A \cap B^{\prime}\right)}{n(\xi)}=\frac{7}{20}$

iv. A Biology student but not an Art student
$n(B$ and not $A)=2$
$n\left(B \cap A^{\prime}\right)=2$
$\operatorname{Pr}\left(B \cap A^{\prime}\right)=\frac{n\left(A \cap B^{\prime}\right)}{n(\xi)}=\frac{2}{20}=\frac{1}{10}$

v. Neither an Art or Biology student $n(\boldsymbol{n o t} A$ and not $B)=8$
$n\left(A^{\prime} \cap B^{\prime}\right)=8$
$\operatorname{Pr}\left(B \cap A^{\prime}\right)=\frac{n\left(A \cap B^{\prime}\right)}{n(\xi)}=\frac{8}{20}=\frac{2}{5}$

vi. Both an Art and Biology student
$n(A$ and $B)=3$
$n(A \cap B)=3$
$\operatorname{Pr}(A \cap B)=\frac{n(A \cap B)}{n(\xi)}=\frac{3}{20}$

Tables
In a similar way, a table can be used to show similar information. Consider the following two -way table.

	\boldsymbol{B}	$\boldsymbol{n o t} \boldsymbol{B}\left(\boldsymbol{B}^{\prime}\right)$
\boldsymbol{A}	A and $B(A \cap B)$	A and not $B\left(A \cap B^{\prime}\right)$
$\operatorname{not} \boldsymbol{A}\left(\boldsymbol{A}^{\prime}\right)$	not A and $B\left(A^{\prime} \cap B\right)$	not A and not $B\left(A^{\prime} \cap B^{\prime}\right)$

Example 2
In a class of 20 students, 10 study Art, 5 study Biology and 3 study both. Construct a two-way table.

The number of each group is as follows:

	Biology (B)	not Biology $\left(B^{\prime}\right)$	Total
$\boldsymbol{\operatorname { A r t }}(\boldsymbol{A})$	3	7	10
$\boldsymbol{n o t} \boldsymbol{A r t}\left(\boldsymbol{A}^{\prime}\right)$	2	8	10
Total	5	15	20

The probability of each group is as follows:

	Biology (B)	not Biology $\left(\boldsymbol{B}^{\prime}\right)$
Art (\boldsymbol{A})	$3 / 20$	$7 / 20$
not $\boldsymbol{A r t}\left(\boldsymbol{A}^{\prime}\right)$	$2 / 20$	$8 / 20$

