# Bivariate Data – Sample Task 2

The table below shows male life expectancy (male) and female life expectancy (female) for a number of countries in 2013. The scatterplot has been constructed from this data.

| Life expectancy (in years) in 2013 |        |
|------------------------------------|--------|
| male                               | female |
| 80                                 | 85     |
| 60                                 | 62     |
| 73                                 | 80     |
| <mark>70</mark>                    | 71     |
| <mark>70</mark>                    | 78     |
| 78                                 | 83     |
| 77                                 | 80     |
| 65                                 | 69     |
| 74                                 | 77     |
| 70                                 | 78     |
| 75                                 | 81     |
| 58                                 | 60     |
| 80                                 | 86     |
| 69                                 | 73     |
| 79                                 | 84     |
| 72                                 | 81     |
| 78                                 | 85     |
| 72                                 | 79     |
| 77                                 | 81     |
| 71                                 | 80     |



| Title  | Linear R |
|--------|----------|
| RegEqn | a+b*x    |
| а      | 9.69093  |
| b      | 0.807586 |
| r²     | 0.9017   |

## Task.1

Name the *response variable* in the equation of this least squares line.

Response variable: Male life expectancy (years)

#### Task.2

Determine the *equation of the least squares line* in terms of the variables *male life expectancy* and *female life expectancy*. Write your answers in the appropriate boxes provided below. Round the numbers representing the intercept and slope to **three significant figures**.



## Task.3

Write the value of the *correlation coefficient* rounded to three decimal places.

r = **0.950** 

#### Task.4

Describe the *association* between the two variables, in terms of *direction, form* and *strength*.

This indicates there is a strong, positive, linear association between the Male Life Expectancy (years) and the Female Life Expectancy (days).

#### Task.5

Write the value of the *coefficient of determination* rounded to three decimal places.



## Task.6

Interpret the *coefficient of determination* in terms of *male life expectancy* and *female life expectancy*.

We can conclude from this that 90.2% of the variation in Male Life expectancy can be explained by the variation in the Female Life Expectancy.

Interpret the *slope* of the least squares line in terms of *male life expectancy and female life expectancy*.

*On average, for every extra year of Female Life Expectancy the Male Life Expectancy increases by 0.808 years.* 

## Task.8

Interpret the *y-intercept* of the least squares line in terms of male life expectancy and female life expectancy.

A Female Life expectancy of 0 years predicts a Male Life Expectancy of 9.69 years

## Task.9

One particular set of data from the table stated that a female life expectancy of 71 years had a male life expectancy of 70 years

Calculate the residual for this set of data, to two decimal places. Show workings out.

**Step.1** Calculate the predicted Male Life Expectancy (years) for a Female Life Expectancy of 71 years. *Male Life Expectancy (years)* =  $9.69 + 0.808 \times Female Life expectancy (years)$  *Male Life Expectancy (years)* =  $9.69 + 0.808 \times 71$ *Life span (years)* = 67.038

**Step.2** Calculate the residual for a Female Life Expectancy of 71 years Residual = (Actual y value) - (Predicted y value) Residual = 70 - 67.038Residual = 2.962

*residual* = **2.962** 

