GRAVITATIONAL POTENTIAL ENERGY

Question 1

A person raises a 40 kg mass a height of 5 m above the ground. Calculate the masses gravitational potential energy ($E_{g p}$).
$E_{g p}=$
$m=$
$g=$
$h=$

Question 2

A person raises a 40 kg mass a height (h) above the ground.
Calculate the height (h), given the masses gravitational potential energy

$\left(E_{g p}\right)$ is 1800 Joules
$E_{g p}=$
$m=$
$g=$
$h=$

Question 3

A person raises a mass (m) a height of 5 m above the ground.
Calculate the mass (m), given the masses gravitational potential energy
$\left(E_{g p}\right)$ is 2500 Joules.
$E_{g p}=$
$m=$
$g=$
$h=$

KINETIC ENERGY

Question 1

A rocket of mass 5 tonne has a speed of $100 \mathrm{~m} / \mathrm{s}$.
Calculate the rocket's kinetic energy $\left(E_{k}\right)$.
$E_{k}=$
$m=$
$v=$

Question 2

A rocket of mass 2 tonne has a kinetic energy $\left(E_{k}\right)$ of 2.5 MJ .
Calculate the speed of this rocket?
$E_{k}=$
$m=$
$v=$

Question 3

A rocket of unknown mass travels with a speed of $1000 \mathrm{~km} / \mathrm{h}$ and has a kinetic energy $\left(E_{k}\right)$ of 386.42 MJ .
Calculate the mass of this rocket in tonnes?
$E_{k}=$
$m=$
$v=$

STRAIN POTENTIAL ENERGY

Question 1

A spring of spring constant (k) of $500 \mathrm{~N} / \mathrm{m}$, is extended by 20 cm . Calculate the spring's strain potential energy ($E_{s p}$).
$E_{s p}=$
$k=$
$\Delta x=$

Question 2

A spring of spring constant (k) of $500 \mathrm{~N} / \mathrm{m}$, is extended by an unknown

amount $(\Delta \mathrm{x})$. Given the spring's strain potential energy $\left(E_{s p}\right)$ is 40 J , calculate the extension (Δx).
$E_{s p}=$
$k=$
$\Delta x=$

Question 3

A spring of unknown spring constant (k), is extended (Δx) by 50 cm . Given the spring's strain potential energy $\left(E_{s p}\right)$ is 25 J , calculate the spring constant (k).
$E_{s p}=$
$k=$
$\Delta x=$

