VCAA "Dot Points"

Investigating data distributions, including:

• review of representation, display and description of the distributions of numerical variables: the use of a log (base 10) scale to display data ranging over several orders of magnitude and their interpretation in powers of ten

The Logarithmic Scale

A **logarithmic scale** is a nonlinear scale used to **compress** a large range of quantities. This scale is used where the quantities being measure increase **exponentially**.

Example 1

Value	1	10	100	1000	10000	100000	1000000	10000000
Exponential	10 <mark>0</mark>	10 <mark>1</mark>	10 ²	10 ³	10 <mark>4</mark>	10 ⁵	10 ⁶	10 ⁷
Log ₁₀	0	1	2	3	4	5	6	7

NB: There is an obvious relationship between a value, its exponential form and its log₁₀ form.

Example 2

Consider the following populations of towns and cities in Victoria.

Melbourne Geelong Ballarat Horsham Churchill Wilcannia	3,707,530 143,921 85,000 15,292 4,750 688	[Source: 2011 population census]
Yanac	84	

Express these as log₁₀ values.

Melbourne	log ₁₀ (3,707,530)	=	6.57
Geelong	log ₁₀ (143,921)	=	5.16
Ballarat	log ₁₀ (85,000)	=	4.93
Horsham	log ₁₀ (15,292)	=	4.18
Churchill	log ₁₀ (4,750)	=	3.68
Wilcannia	log ₁₀ (688)	=	2.84
Yanac	log ₁₀ (84)	=	1.92

NB: Melbourne's population is between 1000000 (10^6) & 10000000 (10^7). So when the \log_{10} is calculated you would expect the answer to be between 6 & 7. Whereas Yanac's population is between 10 (10^1) & 100 (10^2). So taking the \log_{10} of Yanac's population will provide an answer between 1 & 2.

Example 3

Raw chicken when left out at room temperature will grow bacteria which doubles in number every half hour. This is an example of an **exponential growth**.

Task.1: Assuming you start with a single bacterium cell. Graph the bacterial growth over a 12 hour period using a linear scale.

NB: 6E+6 as shown on the vertical axis of the TI-Nspire graph represents 6 "Exponential" to the power of 6.

ie. $6E+6 = 6 \times 10^6$ (or rather 6 million bacteria)

The orders of magnitude shown on this graph are massively different.

Values vary from 1 to 16.8 million bacteria

Task.2: Repeat the above graph. However, this time use a logarithmic to the base 10 scale for the bacteria number.

NB: the logarithmic scale provides a simple 0 to 6 scale for the population. Where each increase actually represents an increase in the order of magnitude.

ie.
$$\log_{10}(1) = 0$$

 $\log_{10}(10^1) = 1$
 $\log_{10}(10^2) = 2$
 $\log_{10}(10^3) = 3$
 $\log_{10}(10^4) = 4$
 $\log_{10}(10^5) = 5$

The bacteria values have been **compressed** by the logarithmic scale.

YouTube Video: https://www.youtube.com/watch?v=uWmZmr31K8I

Expanding from a log₁₀ value

Whilst it is clear to see that large orders of magnitudes can be compressed using a logarithmic scale. How can you reverse the procedure and expand from a compressed log value back to an original value?

Log10(x) = 5 Log10(x) = 3.25 Log10(x) = 2.5

$$\therefore x = 10^5$$
 $\therefore x = 10^{3.25}$ $\therefore x = 10^{2.5}$
= 10,0000 = 1778 = 316

Example 4

The pH scale for chemical acidity and ranges from 0-14 and uses a logarithmic scale.

How many more times acidic is a solution of pH 5 than a solution of pH 3.

(ie.
$$\frac{10^5}{10^3} = 10^{(5-3)} = 10^2 = 100$$
)

Example 5

The Richter scale assigns a magnitude number to quantify the size of an earth quake from 1-10 and uses a logarithmic scale.

How many times greater is the intensity of a Richter scale reading of 8 than a Richter scale reading of 5?

(ie.
$$\frac{10^8}{10^5} = 10^{(8-5)} = 10^3 = 1000$$
)

Question 1

(2016 Sample Exam 1 Section A – Qn 7)

The histogram above displays the distribution of the annual per capita oil consumption (tonnes) for 58 countries plotted on a log scale. The percentage of countries with an annual per capita oil consumption of more than 10 tonnes is closest to

- **A.** 1%
- **B.** 2%
- **C.** 27%
- **D.** 57%
- **E.** 98%

$$solve\left(\log_{10}(x)=1,x\right) \qquad x=10$$

 $Log_{10}(10) = 1$

: the column representing an annual per capita of 10 or above is the far right column (1.0 – 1.5) Frequency (1.0 \rightarrow 1.5) = 1

However, this represents a percentage of $\frac{1}{58} \times 100 = 1.72\%$. This is approximately 2%.

.. Option B

Question 2

(2016 Exam 1 Section A – Qn 7)

The histogram below shows the distribution of the number of billionaires per million people for 53 countries plotted on a log10 scale.

Based on this histogram, the number of countries with one or more billionaires per million people is

x=1

D. 9

 \mathbf{E}

solve
$$\left(\log \frac{x}{10} = 0, x\right)$$

Recall
$$\log_{10}(x) = 0$$
, $\therefore x = 10^{0} = 1$

$$\log_{10}(x) = 1$$
, $\therefore x = 10^1 = 10$

$$\log_{10}(x) = 2$$
, $\therefore x = 10^2 = 100$

Columns 0-1 & 1-2 represent one or more billionaires per million people

- \therefore Number of countries with one or more billionaires per million people = 9 + 1 = 10
- ∴ Option E

Question 3

(2017 Exam 1 Section A – Qn 4)

The histogram below shows the distribution of the log10 (area), with area in square kilometres, of 17 islands.

The median area of these islands, in square kilometres, is between

- **A.** 2 and 3
- **B.** 3 and 4
- **C.** 10 and 100
- **D.** 1000 and 10 000
- E. 10 000 and 100 000

D

The histogram consist of 17 islands.

∴ the median score = $\frac{17+1}{2}$ = 9th score

The 90^{th} score (or frequency) occurs in the interval of $3 < log_{10}$ (area) < 4

- $\therefore 10^3 < \text{area} < 10^4$ 1000 < area < 10000
- .: Option D