## VCAA "Dot Points"

Investigating data distributions, including:

- review of representation, display and description of the distributions of numerical variables: the use of a log (base 10) scale to display data ranging over several orders of magnitude and their interpretation in powers of ten


## The Logarithmic Scale

A logarithmic scale is a nonlinear scale used to compress a large range of quantities. This scale is used where the quantities being measure increase exponentially.

## Example 1

| Value | 1 | 10 | 100 | 1000 | 10000 | 100000 | 1000000 | 10000000 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Exponential | $10^{0}$ | $10^{1}$ | $10^{2}$ | $10^{3}$ | $10^{4}$ | $10^{5}$ | $10^{6}$ | $10^{7}$ |
| $\log _{10}$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

NB: There is an obvious relationship between a value, its exponential form and its $\log _{10}$ form.

## Example 2

Consider the following populations of towns and cities in Victoria.

| Melbourne | $3,707,530$ |
| :--- | :--- |
| Geelong | 143,921 |
| Ballarat | 85,000 |
| Horsham | 15,292 |
| Churchill | 4,750 |
| Wilcannia | 688 |
| Yanac | 84 |

Express these as $\log _{10}$ values.

| Melbourne | $\log _{10}(3,707,530)$ | $=$ | 6.57 |
| :--- | :--- | :--- | :--- |
| Geelong | $\log _{10}(143,921)$ | $=$ | 5.16 |
| Ballarat | $\log _{10}(85,000)$ | $=$ | 4.93 |
| Horsham | $\log _{10}(15,292)$ | $=$ | 4.18 |
| Churchill | $\log _{10}(4,750)$ | $=$ | 3.68 |
| Wilcannia | $\log _{10}(688)$ | $=$ | 2.84 |
| Yanac | $\log _{10}(84)$ | $=$ | 1.92 |

NB: Melbourne's population is between $1000000\left(10^{6}\right) \& 10000000\left(10^{7}\right)$.
So when the $\log _{10}$ is calculated you would expect the answer to be between $6 \& 7$.
Whereas Yanac's population is between $10\left(10^{1}\right) \& 100\left(10^{2}\right)$.
So taking the $\log _{10}$ of Yanac's population will provide an answer between $1 \& 2$.

## Example 3

Raw chicken when left out at room temperature will grow bacteria which doubles in number every half hour. This is an example of an exponential growth.

Task.1: Assuming you start with a single bacterium cell. Graph the bacterial growth over a 12 hour period using a linear scale.


NB: $6 \mathrm{E}+6$ as shown on the vertical axis of the TI-Nspire graph represents 6 "Exponential" to the power of 6 .
ie. $6 \mathrm{E}+6=6 \times 10^{6}$ (or rather 6 million bacteria)

The orders of magnitude shown on this graph are massively different.

Values vary from 1 to 16.8 million bacteria

Task.2: Repeat the above graph. However, this time use a logarithmic to the base 10 scale for the bacteria number.


NB: the logarithmic scale provides a simple 0 to 6 scale for the population. Where each increase actually represents an increase in the order of magnitude.
ie. $\log _{10}(1)=0$
$\log _{10}\left(10^{1}\right)=1$
$\log _{10}\left(10^{2}\right)=2$
$\log _{10}\left(10^{3}\right)=3$
$\log _{10}\left(10^{4}\right)=4$
$\log _{10}\left(10^{5}\right)=5$
The bacteria values have been compressed by the logarithmic scale.

[^0]
## Expanding from a $\log _{10}$ value

Whilst it is clear to see that large orders of magnitudes can be compressed using a logarithmic scale. How can you reverse the procedure and expand from a compressed log value back to an original value?
$\log 10(x)=5$
$\log 10(x)=3.25$
$\log 10(x)=2.5$
$\therefore x=10^{5} \quad \therefore x=10^{3.25}$
$=10,0000$
$=1778$
$\therefore x=10^{2.5}$
$=316$

## Example 4

The pH scale for chemical acidity and ranges from 0-14 and uses a logarithmic scale.


How many more times acidic is a solution of pH 5 than a solution of pH 3 .
(ie. $\frac{10^{5}}{10^{3}}=10^{(5-3)}=10^{2}=100$ )

## Example 5

The Richter scale assigns a magnitude number to quantify the size of an earth quake from 1-10 and uses a logarithmic scale.

## What is the Richter scale?

```
0-2.0 2.1-2.9 3.0-3.9 4.0-4.9 5.0-5.9 6.0-6.9 7.0-7.9 8.0-8.9 9.0-10
```



How many times greater is the intensity of a Richter scale reading of 8 than a Richter scale reading of 5 ?
(ie. $\frac{10^{8}}{10^{5}}=10^{(8-5)}=10^{3}=1000$ )

## Exam Styled Questions (current study design) - Multiple Choice

## Question 1

(2016 Sample Exam 1 Section A - Qn 7)


The histogram above displays the distribution of the annual per capita oil consumption (tonnes) for 58 countries plotted on a log scale. The percentage of countries with an annual per capita oil consumption of more than 10 tonnes is closest to
A. $1 \%$
B. $2 \%$
C. $27 \%$
D. $57 \%$
E. $98 \%$

## B

$$
\text { solve }\left(\log _{10}(x)=1, x\right) \quad x=10
$$

$\log _{10}(10)=1$
$\therefore$ the column representing an annual per capita of 10 or above is the far right column (1.0-1.5) Frequency $(1.0 \rightarrow 1.5)=1$

However, this represents a percentage of $\frac{1}{58} \times 100=1.72 \%$. This is approximately $2 \%$.
$\therefore$ Option B

## Question 2

(2016 Exam 1 Section A - Qn 7)

The histogram below shows the distribution of the number of billionaires per million people for 53 countries plotted on a log10 scale.


Based on this histogram, the number of countries with one or more billionaires per million people is
A. 1
B. 3
C. 8

$$
x=1
$$

D. 9
E. 10

$$
\text { solve }\left(\log _{10}(x)=0, x\right)
$$

Columns 0-1 \& 1-2 represent one or more billionaires per million people
$\therefore$ Number of countries with one or more billionaires per million people $=9+1=10$
$\therefore$ Option E

$$
\begin{aligned}
& \text { Recall } \log _{10}(x)=0, \therefore x=10^{0}=1 \\
& \log _{10}(x)=1, \therefore x=10^{1}=10 \\
& \log _{10}(x)=2, \therefore x=10^{2}=100
\end{aligned}
$$

## Question 3

(2017 Exam 1 Section A - Qn 4)

The histogram below shows the distribution of the log10 (area), with area in square kilometres, of 17 islands.


The median area of these islands, in square kilometres, is between
A. 2 and 3
B. 3 and 4
C. 10 and 100
D. 1000 and 10000
E. 10000 and 100000

## D

The histogram consist of 17 islands.
$\therefore$ the median score $=\frac{17+1}{2}=9$ th score
The $90^{\text {th }}$ score (or frequency) occurs in the interval of $3<\log _{10}$ (area) $<4$
$\therefore 10^{3}<$ area $<10^{4}$
$1000<$ area < 10000
$\therefore$ Option D


[^0]:    YouTube Video: https://www.youtube.com/watch?v=uWmZmr31K8I

