Section 4.1.1 - Introduction to Matrices

VCAA "Dot Points"

Matrices and their applications, including:

- review of matrix arithmetic: the order of a matrix, types of matrices (row, column, square, diagonal, symmetric, triangular, zero, binary and identity), the transpose of a matrix, elementary matrix operations (sum, difference and multiplication of a scalar).
- use of matrices to represent numerical information presented in tabular form, and the use of a rule for the $a_{i j}$ th element of a matrix to construct the matrix

Intro. To Matrices

A matrix is a rectangular array of numbers arranged in rows and columns. The numbers in the matrix are called the elements or entry of the matrix.

A matrix with m rows and n columns is called an ($\mathrm{m} x \mathrm{n}$) matrix. Matrix A below is an m by matrix.

> m rows $\left[\right.$| n columns | | |
| :---: | :---: | :---: |
| a_{11} | a_{12} | a_{13} |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |$]$

NB: The elements within the matrix A are labelled a

Example. 1

State the order of the following matrices.

Matrix A

$\left[\begin{array}{l}2 \\ 3\end{array}\right]$

Matrix B

$\left[\begin{array}{ccc}2 & -1 & 6\end{array}\right]$

Matrix C

$\left[\begin{array}{ccc}5 & 0 & 3 \\ -1 & 4 & 7\end{array}\right]$

Matrix D

$\left[\begin{array}{llll}3 & 1 & 4 & 6 \\ 3 & 0 & 9 & 8 \\ 1 & 5 & 7 & 2\end{array}\right]$

Matrix A - Consists of 2 rows \& 1 column. \therefore the order of Matrix A is (2×1)
Matrix B - Consists of 1 row $\& 3$ columns. \therefore the order of Matrix B is (1×3)
Matrix C - Consists of 2 rows $\& 3$ columns. \therefore the order of Matrix C is (2×3)
Matrix D - Consists of 3 rows \& 4 columns. \therefore the order of Matrix D is (3×4)
The elements of the matrix A are referred to as a_{mn}, where m refers to the row position and n refers to the column position.

Example. 2

Consider the following matrices.

$$
A=\left[\begin{array}{lll}
1 & 4 & 4 \\
5 & 2 & 2 \\
2 & 3 & 1
\end{array}\right] \quad B=\left[\begin{array}{ccc}
7 & 1 & -3 \\
3 & -2 & 4
\end{array}\right]
$$

For both matrix A and matrix B :

1. State the order of the matrices
2. List the elements for Matrix A \& B for positions 2,1 and 1,2 within each matrix.

Solutions:

1. Matrix A is a (3×3) matrix Matrix B is a (2×3) matrix
2. Matrix A, position $2,1\left(\mathrm{a}_{21}\right)=5$

Matrix B, position 2,1 $\left(\mathrm{b}_{21}\right)=3$

Matrix A, position 1,2 $\left(a_{12}\right)=4$
Matrix B, position 1,2 $\left(b_{12}\right)=1$

NB: In most VCAA exam questions the following notation is used:
Rows are represented by the letter i
Columns are represented by the letter j
Accordingly, any element of matrix A can be represented by $a_{i j}$.

Classification of Matrices

[3 $\left.\begin{array}{lll}3 & 1 & -2\end{array}\right]$ Row matrix or row vector (1 single row)
$\left[\begin{array}{l}5 \\ 1 \\ 0\end{array}\right]$
Column matrix or a column vector (1 single column)
$\left[\begin{array}{ll}2 & 3 \\ 1 & 5\end{array}\right] \quad$ Square matrix (equal number of rows and columns)
$\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$
Diagonal matrix (a square matrix with non-zero elements on the main diagonal only)

Symmetric matrix (The entries of a symmetric matrix are symmetric with respect to the main diagonal. Only square matrices can be symmetric.)
$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 3 & 1 & 0 & 0 \\ 7 & 4 & 5 & 0 \\ 2 & 1 & 4 & 6\end{array}\right]$

Triangular matrix (a square matrix is called lower triangular if all the entries above the main diagonal are 0 . Similarly, a square matrix is called upper triangular if all the entries below the main diagonal are 0 .)

Zero matrix (a zero matrix is a matrix consisting of all 0s. Zero matrices are sometimes also known as null matrices.)

Binary matrix (a binary matrix is a matrix consisting of only $1 \mathrm{~s} \& 0 \mathrm{~s}$.)

Identity matrix (a square matrix in which all the elements of the principal diagonal are 1 s and all other elements are 0 s.

Matrix A Matrix B
$\left[\begin{array}{cc}1 & 0 \\ 7 & -3\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ 7 & -3\end{array}\right]$

Equal matrices (two matrices are equal if they are the same order and all corresponding elements are equal, that is $\boldsymbol{A}=\boldsymbol{B}$.

The Transpose of a Matrix

The transpose of a matrix is a new matrix whose rows are the columns of the original.
(This makes the columns of the new matrix the rows of the original).
Consider the following matrix A;
$A=\left[\begin{array}{ccc}5 & 4 & 3 \\ \hline 4 & 0 & 4 \\ 7 & 10 & 3\end{array}\right]$, the transpose of matrix A would be: $A^{T}=\left[\begin{array}{ccc}5 & 4 & 7 \\ 4 \\ 3 & 0 & 10 \\ 4 & 3\end{array}\right]$
NB: $A($ row 1$)=A^{\top}($ column 1)
$A($ row 2$)=A^{\top}$ (column 2)
$A($ row 3$)=A^{\top}($ column 3$)$
The superscript " T " means "transpose"
Non-square matrices can also be transposed. Consider the following example:

Example. 3

Given that $B=\left[\begin{array}{cc}5 & 4 \\ 4 & 0 \\ 7 & 10 \\ -1 & 8\end{array}\right]$, calculate $B^{T}\left[\begin{array}{cc}5 & 4 \\ 4 & 0 \\ 7 & 10 \\ -1 & 8\end{array}\right]$,

Example. 4

What happened when a transposed matrix is itself transposed? Let's perform a double transposition of matrix A above:
$\left.\left(A^{T}\right)^{T}=\left[\begin{array}{lcc}5 & 4 & 3 \\ 4 & 0 & 4 \\ 7 & 10 & 3\end{array}\right]^{T}\right]^{T}=\left[\begin{array}{ccc}5 & 4 & 7 \\ 4 & 0 & 10 \\ 3 & 4 & 3\end{array}\right]^{T}=\left[\begin{array}{ccc}5 & 4 & 3 \\ 4 & 0 & 4 \\ 7 & 10 & 3\end{array}\right]$
The above calculations show that $\left(A^{T}\right)^{T}=A$

Example. 5

What happened when a symmetric matrix is transposed?
$A=\left[\begin{array}{lll}5 & 4 & 3 \\ 4 & 0 & 7 \\ 3 & 7 & 1\end{array}\right]$, the transpose of matrix A would be; $A^{T}=\left[\begin{array}{lll}5 & 4 & 3 \\ 4 & 0 & 7 \\ 3 & 7 & 1\end{array}\right]$

The above calculations show that a symmetrical matrix is equal to its transpose $A^{T}=A$. Note that in a symmetrical matrix $a_{i j}=a_{j i}$

Operations with Matrices

Matrices of the same order (or size) can be added and subtracted. This is carried out by adding and subtracting corresponding elements.

Example. 6
Consider the following matrices.

$$
A=\left[\begin{array}{lll}
1 & 4 & 4 \\
5 & 2 & 2 \\
2 & 3 & 1
\end{array}\right] \quad B=\left[\begin{array}{ccc}
4 & -3 & 1 \\
-2 & 2 & 3 \\
3 & 1 & 2
\end{array}\right]
$$

Calculate:

1. $A+B$
2. $B-A$

Solutions:

1. $\mathrm{A}+\mathrm{B}=\left[\begin{array}{lll}1 & 4 & 4 \\ 5 & 2 & 2 \\ 2 & 3 & 1\end{array}\right]+\left[\begin{array}{ccc}4 & -3 & 1 \\ -2 & 2 & 3 \\ 3 & 1 & 2\end{array}\right]$

$$
=\left[\begin{array}{lll}
5 & 1 & 5 \\
3 & 4 & 5 \\
5 & 4 & 3
\end{array}\right]
$$

2. $\mathrm{B}-\mathrm{A}=\left[\begin{array}{ccc}4 & -3 & 1 \\ -2 & 2 & 3 \\ 3 & 1 & 2\end{array}\right]-\left[\begin{array}{lll}1 & 4 & 4 \\ 5 & 2 & 2 \\ 2 & 3 & 1\end{array}\right]$

$$
=\left[\begin{array}{ccc}
3 & -7 & -3 \\
-7 & 0 & 1 \\
1 & -2 & 1
\end{array}\right]
$$

Multiplication by a Scalar

Consider the matrix $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right]$
Now calculate the matrix for 4A.
NB The number 4 is called a scalar.
$4 A=4\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right]=\left[\begin{array}{ll}4 \times 2 & 4 \times 1 \\ 4 \times 1 & 4 \times 3\end{array}\right]=\left[\begin{array}{cc}8 & 4 \\ 4 & 12\end{array}\right]$
When a matrix is multiplied by a scalar, each element of the matrix is multiplied by the scalar.

Example. 7

Consider the following matrices.

$$
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 2 \\
4 & 0
\end{array}\right]
$$

Calculate:

1. 2 A
2. 3 B
3. $2 A+3 B$

Define $a=\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right]$	Done
Define $b=\left[\begin{array}{ll}1 & 2 \\ 4 & 0\end{array}\right]$	Done

Solutions:

1. 2 A
$2 A=2\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right]=\left[\begin{array}{ll}2 \times 2 & 2 \times 1 \\ 2 \times 1 & 2 \times 3\end{array}\right]=\left[\begin{array}{ll}4 & 2 \\ 2 & 6\end{array}\right]$

$2 \cdot a$	$\left[\begin{array}{ll}4 . & 2 . \\ 2 . & 6 .\end{array}\right]$
$3 \cdot b$	$\left[\begin{array}{cc}3 . & 6 . \\ 12 . & 0 .\end{array}\right]$

2. 3B
$3 B=3\left[\begin{array}{ll}1 & 2 \\ 4 & 0\end{array}\right]=\left[\begin{array}{ll}3 \times 1 & 3 \times 2 \\ 3 \times 4 & 3 \times 0\end{array}\right]=\left[\begin{array}{cc}3 & 6 \\ 12 & 0\end{array}\right]$
$2 \cdot a+3 \cdot b$
3. $2 A+3 B$
$2 A+3 B=\left[\begin{array}{ll}4 & 2 \\ 2 & 6\end{array}\right]+\left[\begin{array}{cc}3 & 6 \\ 12 & 0\end{array}\right]$

$$
=\left[\begin{array}{cc}
7 & 8 \\
14 & 6
\end{array}\right]
$$

Using Element Rules ($\mathrm{a}_{\mathrm{ij}}{ }^{\text {th }}$) to construct the Matrix

In some circumstances you will be asked to construct a matrix following a set of "element rules", based upon the elemental references $i \& j$.

Recall the elemental labelling for Matrix $A, a_{i j}$

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

Let's consider the following example:

Example. 8
The table below shows information about two matrices, A and B

Matrix	Order	Rule
A	2×2	$a_{i j}=i+j$
B	2×2	$b_{i j}=2 i-j$

The element in row i and column j of matrix A is a_{ij}.
The element in row i and column j of matrix B is b_{ij}.

Construct Matrix A
Following the rule: $a_{i j}=i+j$
$\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]=\left[\begin{array}{ll}(1+1) & (1+2) \\ (2+1) & (2+2)\end{array}\right]=\left[\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right]$

Construct Matrix B

Following the rule: $a_{i j}=2 i-j$
$\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]=\left[\begin{array}{ll}(2 \times 1-1) & (2 \times 1-2) \\ (2 \times 2-1) & (2 \times 2-2)\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 3 & 2\end{array}\right]$

Construct Matrix $(A+B)$

$\left[\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right]+\left[\begin{array}{ll}1 & 0 \\ 3 & 2\end{array}\right]=\left[\begin{array}{ll}3 & 3 \\ 6 & 6\end{array}\right]$

Exam Styled Questions - Multiple Choice

Question 1

(2017 Exam 1, Module 1, Qn 1)

Kai has a part-time job. Each week, he earns money and saves some of this money. The matrix below shows the amounts earned (E) and saved (S), in dollars, in each of three weeks.

How much did Kai save in week 2?
A. $\$ 80$
B. $\$ 90$
C. $\$ 100$
D. $\$ 170$
E. $\$ 270$

B

Week 2 is located in row 2 of the above matrix and the amount saved (S) is located in column 2. So the amount saved in week 2 by Kai is located at the intersection of row 2 and column 2.

\therefore Option B

Question 2

(2016 Exam 1, Module 1, Qn 1)
The transpose of $\left[\begin{array}{ccc}2 & 7 & 10 \\ 13 & 19 & 8\end{array}\right]$ is
A. $\left[\begin{array}{ccc}13 & 19 & 8 \\ 2 & 7 & 10\end{array}\right]$
B. $\left[\begin{array}{ccc}10 & 7 & 2 \\ 8 & 19 & 13\end{array}\right]$
C. $\left[\begin{array}{cc}2 & 13 \\ 7 & 19 \\ 10 & 8\end{array}\right]$
D. $\left[\begin{array}{cc}13 & 2 \\ 19 & 7 \\ 8 & 10\end{array}\right]$
E. $\left[\begin{array}{cc}8 & 10 \\ 19 & 7 \\ 13 & 2\end{array}\right]$

Question 3

(2017 Exam 1, Module 1, Qn 6)
The table below shows information about two matrices, A and B

Matrix	Order	Rule
A	3×3	$a_{i j}=2 i+j$
B	3×3	$b_{i j}=i-j$

The element in row i and column j of matrix A is $a_{i j}$. The element in row i and column j of matrix B is b_{ij}. The sum $A+B$ is
A.
$\left[\begin{array}{ccc}5 & 7 & 9 \\ 8 & 10 & 12 \\ 11 & 13 & 15\end{array}\right]$
B.
$\left[\begin{array}{ccc}5 & 8 & 11 \\ 7 & 10 & 13 \\ 9 & 12 & 15\end{array}\right]$
C.
$\left[\begin{array}{lll}3 & 6 & 9 \\ 3 & 6 & 9 \\ 3 & 6 & 9\end{array}\right]$
D.

$$
\left[\begin{array}{lll}
3 & 3 & 3 \\
6 & 6 & 6 \\
9 & 9 & 9
\end{array}\right]
$$

E.
$\left[\begin{array}{lll}3 & 6 & 3 \\ 6 & 3 & 9 \\ 3 & 9 & 3\end{array}\right]$

D

The elements for $A+B$ will be $a_{i j}+b_{i j}=(2 i+j)+(i-j)=3 i$
$\therefore A+B=\left[\begin{array}{lll}a_{11}=3 \times 1 & a_{12}=3 \times 1 & a_{13}=3 \times 1 \\ a_{21}=3 \times 2 & a_{22}=3 \times 2 & a_{23}=3 \times 2 \\ a_{31}=3 \times 3 & a_{32}=3 \times 3 & a_{33}=3 \times 3\end{array}\right]=\left[\begin{array}{lll}3 & 3 & 3 \\ 6 & 6 & 6 \\ 9 & 9 & 9\end{array}\right]$

\therefore Option D

Question 4

(2016 Exam 1, Module 1, Qn 5)

Let $M=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 4 & 5 & 6\end{array}\right]$
The element in row i and column j of M is m_{ij}. The elements of M are determined by the rule
A. $m_{i j}=i+j-1$
B. $m_{i j}=2 i-j+1$
C. $m_{i j}=2 i+j-2$
D. $m_{i j}=i+2 j-2$
E. $m_{i j}=i+j+1$

C

Let's examine the top row.

	$m_{11}=1$	$m_{12}=2$	$m_{13}=3$	$m_{14}=4$
Option A	$1+1-1=1$	$1+2-1=2$	$1+3-1=3$	$1+4-1=4$
Option B	$(2 \times 1)-1+1-2$			
Option C	$(2 \times 1)+1-2=1$	$(2 \times 1)+2-2=2$	$(2 \times 1)+3-2=3$	$(2 \times 1)+4-2=4$
Option B	$1+(2 \times 1)-2=1$	$1+(2 \times 2) \quad 2=3$		
Option E	$1+1+1-3$			

Only options A \& C remain.
Let's examine the bottom row.

	$m_{21}=3$	$m_{22}=4$	$m_{23}=5$	$m_{24}=6$
Option A	$2+1-1-2$			
Option C	$(2 \times 2)+1-2=3$			

\therefore Option C

Question 5

(2015 Exam 1, Module 1, Qn 1)

Matrix B below shows the number of photography (P), art (A) and cooking (C) books owned by Steven (S), Trevor (T), Ursula (U), Veronica (V) and William (W).

$$
B=\left[\begin{array}{ccc}
P & A & C \\
{\left[\begin{array}{lll}
8 & 5 & 4 \\
1 & 4 & 5 \\
3 & 3 & 4 \\
4 & 2 & 2 \\
1 & 4 & 1
\end{array}\right]}
\end{array}\right] \begin{aligned}
& \\
& S \\
& T \\
& U \\
& V
\end{aligned}
$$

The element in row i and column j of matrix B is $b_{i j}$. The element b_{32} is the number of
A. art books owned by Trevor.
B. art books owned by Ursula.
C. art books owned by Veronica.
D. cooking books owned by Ursula.
E. cooking books owned by Trevor.

B

Element b32 represents Row 3 and Column 2;

- Row 3 represents the number of books owned by Ursula
- Column 2 represents the number of art books owned by the people
\therefore element b_{32} represents the number of art books owned by Ursula.

\therefore Option B

Question 6

(2015 Exam 1, Module 1, Qn 8)
The order of matrix X is 2×3.
The element in row i and column j of matrix X is $x_{i j}$ and it is determined by the rule

$$
x_{i j}=i-j
$$

Which one of the following calculations would result in matrix X ?
A. $\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 2\end{array}\right]-\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right]$
B. $\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right]-\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 2\end{array}\right]$
C. $\left[\begin{array}{lll}2 & 2 & 2 \\ 2 & 2 & 2\end{array}\right]-\left[\begin{array}{lll}3 & 3 & 3 \\ 3 & 3 & 3\end{array}\right]$
D. $\left[\begin{array}{ll}1 & 2 \\ 1 & 2 \\ 1 & 2\end{array}\right]-\left[\begin{array}{ll}1 & 1 \\ 2 & 2 \\ 3 & 3\end{array}\right]$
E. $\left[\begin{array}{ll}1 & 1 \\ 2 & 2 \\ 3 & 3\end{array}\right]-\left[\begin{array}{ll}1 & 2 \\ 1 & 2 \\ 1 & 2\end{array}\right]$

A
$X=\left[\begin{array}{lll}a_{11}=1-1 & a_{12}=1-2 & a_{13}=1-3 \\ a_{21}=2-1 & a_{22}=2-2 & a_{23}=2-3\end{array}\right]=\left[\begin{array}{ccc}0 & -1 & -2 \\ 1 & 0 & -1\end{array}\right]$
Options D \& E are the wrong order
Option C is incorrect for element x_{11}
Option B is incorrect for element x_{21}
\therefore Option A is correct

Question 7

(2014 Exam 1, Module 1, Qn 6)
The order of matrix X is 3×2.
The element in row i and column j of matrix X is $x_{i j}$ and it is determined by the rule

$$
x_{i j}=i+j
$$

The matrix X is
A.
$\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$
B.

$$
\left[\begin{array}{ll}
2 & 3 \\
4 & 5 \\
6 & 7
\end{array}\right]
$$

C.
$\left[\begin{array}{lll}2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right]$
D.
$\left[\begin{array}{ll}1 & 2 \\ 3 & 3 \\ 4 & 4\end{array}\right]$
E.
$\left[\begin{array}{ll}2 & 3 \\ 3 & 4 \\ 4 & 5\end{array}\right]$

E
$\therefore X=\left[\begin{array}{ll}a_{11}=1+1 & a_{12}=1+2 \\ a_{21}=2+1 & a_{22}=2+2 \\ a_{31}=3+1 & a_{32}=3+2\end{array}\right]=\left[\begin{array}{ll}2 & 3 \\ 3 & 4 \\ 4 & 5\end{array}\right]$
\therefore Option E is correct

