Reducing Balance Loans

When you take out a loan with a bank, or other financial institute, they will provide you access to funds and charge you interest for the service.

Just as a savings account gains interest over time, therefore making your savings grow. A loan account with be charged interest making your debt grow.

In fact if you took out a loan say for \$15000 at 7.4% p.a. compounded annually and made no additional payments, your debt would continue to grow each and every year.

n+1	V _n	Interest	V _{n+1}
1	\$15000.00	$15000(\frac{7.4}{100}) = 1110	\$16110.00
2	\$16110.00	$16110(\frac{7.4}{100}) = 1192.14	\$17302.14
3	\$17302.14	$17302.14(\frac{7.4}{100}) = 1280.36	\$18582.50
4	\$18582.50	$$18582.50(\frac{7.4}{100}) = 1375.11	\$19957.61
5	\$19957.61	$$19957.61(\frac{7.4}{100}) = 1476.86	\$21434.47

From the above table it can be seen that your debt has risen from an original (V_0) of \$15000 to a value of \$21434.47 after 5 years (V_5).

The TI-Nspire CAS Financial Solver can also be used to predict the final value of the loan after 5 years

What would happen if at the end of every year we paid a deposit (instalment) of \$2000.00?

n+1	V _n	Interest	$V_n + I$	Deposit	<i>V</i> _{n+1}
1	\$15000.00	$15000(\frac{7.4}{100}) = 1110	\$16110.00	\$2000	\$14110.00
2	\$14110.00	$14110(\frac{7.4}{100}) = 1044.14	\$15154.14	\$2000	\$13154.14
3	\$13154.14	$13154.14(\frac{7.4}{100}) = 973.41	\$14127.55	\$2000	\$12127.55
4	\$12127.55	$$12127.55(\frac{7.4}{100}) = 897.44	\$13024.99	\$2000	\$11024.99
5	\$11024.99	$$11024.99(\frac{7.4}{100}) = 815.85	\$11840.84	\$2000	\$9840.84

VCE Further Maths Unit 3, Core: Data Analysis

The TI-Nspire CAS Financial Solver can also be used to predict the final value of the loan after 5 years with the addition of annual deposits paid of \$2000.00

Clearly the balance of the loan can be reduced over time via periodic payments/instalments.

Payment Comparison

1 st Year Paym	nent	5 th Year Payment		11th Year Payment	
Instalment	\$2,000.00	Instalment	\$2000.00	Instalment	\$2000
V_0	15,000.00	V ₄	\$11024.99	V ₁₀	\$2468.57
V_1	14,110.00	V ₅	\$9840.84	V ₁₁	\$651.24
Amount paid	\$890.00	Amount paid	\$1184.15	Amount paid	\$1817.33
Interest paid	\$1110.00	Interest paid	\$815.85	Interest paid	\$182.67

The further into the loan you get:

- the larger the proportion of your instalment contributes towards paying off the loan.
- the smaller the proportion of your instalment contributes towards paying interest.

Mr Mark Judd Yr 12 Further Maths

The Annuities Formula

The amount owing in a loan account for n repayments is given by the annuities formula:

$$V_n = V_0 R^n - \frac{d(R^n - 1)}{R - 1}$$

Where:

 V_0 = the amount borrowed (principal)

R = the compounding or growth factor for the amount borrowed

= 1 + $\frac{r}{100}$ (r = the interest rate per repayment period)

d = the amount of the regular payments made per period

n = the number of payments

 V_n = the amount owing after n payments

Alternatively, the TI-Nspire CAS "Finance Solver" is always available for reducing balance loans questions.

Example.1

A loan of \$60 000 is taken out over 20 years at a rate of 12% p.a. (interest debited monthly) and is repaid with monthly instalments of \$660.65. Find the amount still owing after:

- 1. 5 years
- 2. 10 years
- 3. 15 years

Task.1

$$V_0 = $60000$$

n = 5 years

$$= 5 \times 12 = 60 \text{ months}$$

$$R = (1 + \frac{1}{100})$$
$$= 1.01$$

$$V_n = V_0 R^n - \frac{d(R^n - 1)}{R - 1}$$

$$V_{60} = 60000 \times (1.01)^{60} - \frac{660.65(1.01^{60} - 1)}{1.01 - 1}$$
= \$55046.73

Task.2

$$V_0$$
 = \$60000
n = 10 years
= 10 × 12 = 120 months
R = $(1 + \frac{1}{100})$
= 1.01
d = \$660.65

$$V_n = V_0 R^n - \frac{d(R^n - 1)}{R - 1}$$

$$V_{120} = 60000 \times (1.01)^{120} - \frac{660.65(1.01^{120} - 1)}{1.01 - 1}$$
= \$46048.15

Task.3

$$V_0$$
 = \$60000
n = 15 years
= 15 × 12 = 180 months
R = $(1 + \frac{1}{100})$
= 1.01
d = \$660.65

$$V_n = V_0 R^n - \frac{d(R^n - 1)}{R - 1}$$

$$V_{180} = 60000 \times (1.01)^{180} - \frac{660.65(1.01^{180} - 1)}{1.01 - 1}$$
= \$29700.46

So after 5 years the balance of the loan was \$55046.73, after 10 years the balance on the loan was \$46048.15 and after 15 years the balance on the loan was \$29700.46.

Example.2

Lisa borrows \$8500 for a cinema room upgrade. She agrees to repay the loan over 5 years with quarterly instalments at 7.8% p.a. (adjusted quarterly). Find:

- 1. The instalment value
- 2. The principal repaid during the 3rd and 15th repayment

Task.1

Using the TI-Nspire CAS "Financial Solver" the value of the instalment would be \$517.33

Task.2 - Part A

Step.1 Calculate the balance of the loan after 2 repayments (quarters)

Loan balance after 2 quarters = \$7789.98

Step.2 Calculate the balance of the loan after 3 repayments (quarters)

Loan balance after 3 quarters = \$7424.56

Principal paid during 3rd repayment (quarter)

- = Balance (after 2 qtrs) Balance (after 3 qtrs)
- = \$7789.98 \$7424.56
- = \$365.42

Principal repaid during the 3rd repayment was \$365.42

Task.2 - Part B

Step.1 Calculate the balance of the loan after 14 repayments (quarters)

Loan balance after 14 quarters = \$2902.62

Step.2 Calculate the balance of the loan after 15 repayments (quarters)

Loan balance after 15 quarters = \$2441.90

Principal paid during 15th repayment (quarter)

- = Balance (after 14 qtrs) Balance (after 15 qtrs)
- = \$2902.62 \$2441.90
- = \$460.72

Principal repaid during the 15th repayment was \$460.72