Perpetuities

A perpetuity is a type of annuity (payment) where a permanently invested sum of money provides an infinite amount of regular payments that continue forever.

Many scholarships and grants are provided using a perpetuity investment. In which case the amount paid out is the same as the interest earned from off the lump sum.

$$d = \frac{V_0 \times r}{100}$$

Where;

$$V_0 = \frac{100 \times d}{r}$$

d = the amount of the regular payment per period (\$) V_0 = the principal (\$) r = the interest rate per period (%)

$$r = \frac{100 \times d}{V_0}$$

NB: The number of payments each year must be the same as the compounding period of the given interest rate.

(ie. annually, monthly, quarterly, weekly etc.)

Example.1

The Apex club has invested \$250 000 from which they wish to establish a community based scholarship for local secondary students. The club invest the sum in a perpetuity account that offers a long-term guaranteed interest rate of 12% p.a.

If the interest is calculated once a year, what would be the annual amount available to the club to distribute via their scholarship program?

Mr Mark Judd Yr 12 Further Maths

Step.1 List all values given

$$d = ?$$

$$V_0 = $250000$$

$$r = 12\% p.a.$$

Step.2 State the formula used

$$d = \frac{V_0 \times r}{100}$$

Step.3 Substitute values into the formula

$$d = \frac{V_0 \times r}{100}$$

$$=\frac{250000\times12}{100}$$

$$= $30000$$

Step.4 Answer the question

The Apex club would have \$30 000 available to distribute each year via their scholarship program.

Mr Mark Judd Yr 12 Further Maths

Using the TI-Nspire To Solve Perpetuity Questions

The TI-Nspire CAS Finance Solver can also be used to solve **perpetuity** questions. However, please be aware of the following points:

Both PV and FV are entered as the same amount as the balance of a perpetuity never changes. However:

PV: enter a negative (-) value as it is a negative cash flow FV: enter a positive (+) value as it is a positive cash flow

Also as the balance of the investment remains constant:

N: = 1 (as the number of periods is irrelevant)

Let's repeat the previous example using the TI-Nspire calculator.

NB: The principal (PV) must be known to use the Finance Solver. If the principal is not known, then one must use the perpetuity formula.

Example.2

A local netball club has \$25,000 to establish a perpetuity as a grant to encourage young and talented players in their club.

The sports club invests the money in bonds that return 5.5% p.a.

- 1. Find the amount of the annual grant
- 2. What interest rate (compounded annually) would be required if the perpetuity is to provide \$1500 each year?

Part 1

Finance Solver			
N:	1	\downarrow	
I(%):	5.5	F	Ш
PV:	-25000	F	
Pmt:	1375.	\triangleright	Ш
FV:	25000)	
PpY:	1		

The amount of the annual grant is \$1375.00.

Part 2

The interest rate required to generate \$1500 annual payments is 6.0% p.a.